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1 Harmonic Oscillator

The motivating problem we consider in this chapter is Newton’s second law applied to a

spring with spring constant k and equilibrium spacing a as shown in Figure 1.1.

The nonrelativistic equation of motion reads

mẍ(t) = −k(x(t)− a) (1.1)

and we must specify initial (or boundary) conditions. The point of Newton’s second law

is the determination of the trajectory of the particle, x(t) in this one-dimensional setting.

The initial conditions render the solution unique. As a second-order differential equation

(ODE), we expect the general solution to have two constants. Then we need two pieces

of information beyond the equation itself to set those constants, and initial or boundary

conditions can be used.

1.1 Solution Review

To proceed, we can define k/m ≡ ω2, so that our equation of motion becomes

ẍ(t) = −ω2(x(t)− a) , (1.2)

and finally, we let y(t) ≡ x(t)−a in order to remove reference to a and allow us to identify

the solution to this familiar ODE:

ÿ(t) = −ω2y(t) −→ y(t) = A cos(ωt) + B sin(ωt). (1.3)

m

k

a x(t)

Fig. 1.1 Amassm is attached to a spring with spring constant k and equilibrium spacing a. It moves without friction under

the inluence of a force F = −k(x(t) − a). We want to ind the location of the mass at time t, x(t), by solving

Newton’s second law.
1
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2 Harmonic Oscillator

The constants A and B have no a priori physical meaning, they are just the constants we

get from a second-order ODE like (1.3).1 The solution for x(t) is

x(t) = y(t) + a = A cos(ωt) + B sin(ωt) + a. (1.4)

Suppose we take the initial value form of the problem. We see the particle at x0 at time

t = 0, moving with velocity v0. This allows us to algebraically solve for A and B:

x(0) = A + a = x0 −→ A = x0 − a

ẋ(0) = Bω = v0 −→ B =
v0

ω
.

(1.5)

When we combine an ODE (like Newton’s second law) with constants (the initial position

and velocity), we have a well-posed problem and a unique solution. Putting it all together,

the problem is

mẍ(t) = −k(x(t)− a) x(0) = x0 ẋ(0) = v0 (1.6)

with solution

x(t) =(x0 − a) cos

(√

k

m
t

)

+ v0

√
m

k
sin

(√

k

m
t

)

+ a. (1.7)

There are many physical observations and definitions associated with this solution.

Suppose that we start the mass from rest, v0 = 0, with an initial extension x0, and we set the

zero of the x axis at the equilibrium spacing a. Then the solution from (1.7) simplifies to

x(t) = x0 cos

(√

k

m
t

)

. (1.8)

We call x0 the “amplitude,” the maximum displacement from equilibrium. The “period”

of the motion is defined to be the time it takes for the mass to return to its starting point.

In this case, we start at t = 0, and want to know when the “cosand” (argument of cosine)

returns to 2π ∼ 0. That is, the period T is defined to be the first time at which

x(T) = x0 cos

(√

k

m
T

)

= x0 −→
√

k

m
T = 2π −→ T = 2π

√
m

k
. (1.9)

This period is, famously, independent of the initial extension.2 That makes some sense,

physically – the larger the initial extension, the faster the maximum speed of the mass is,

so that even though it has to travel a longer distance, it does so at a greater speed. Somehow,

magically, the two effects cancel in this special case.

We can also define the “frequency” of the oscillatory motion, that is just the inverse of

the period, f ≡ 1/T. For the mass on a spring motion,

f =
1

2π

√

k

m
, (1.10)

1 These constants are called “constants of integration” and are reminiscent of the constants that appear when

you can actually integrate the equation of motion twice. That happens when, for example, a force depends

only on time. Then you can literally integrate ẍ(t) = F(t)/m twice to find x(t). There will be two constants of

integration that show up in that process.
2 Don’t believe it! See Section 5.5.
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3 Taylor Expansion

and we define the “angular frequency” of the oscillatory motion to be

ω ≡ 2πf =

√

k

m
, (1.11)

where ω is the letter commonly used, and we have taken advantage of that in writing (1.2).

Problem 1.1.1 What is the solution to Newton’s second law (1.1) with boundary values

given: x(0) = x0 and x(t∗) = x∗ (t∗ refers to some specific time at which we are

given the position, x∗)?

Problem 1.1.2 What happens to the solution in the previous problem if ωt∗ = nπ for

integer n?

Problem 1.1.3 Solve mẍ(t) = F0 for constant force F0 subject to the boundary conditions:

x(0) = x0, x(t∗) = x∗ with x0 and x∗ given. Solve the same problem for a “mixed”

set of conditions: x(0) = x0 and ẋ(t∗) = v∗ with x0 and v∗ given.

Problem 1.1.4 For the oscillatory function x(t) = x0 cos(ωt+φ) with constant φ ∈ [0, 2π)

(the “phase”), find the amplitude and period, and sketch one full cycle of this

function.

Problem 1.1.5 Suppose Newton’s second law read: α
...
x (t) = F(x(t), t) for force F. What are

the units of α in this case? Solve the modified Newton’s second law if the force is

a constant F0 with initial conditions x(0) = x0 and ẋ(0) = v0. What is the problem

with this solution? (is it, for example, unique?).

Problem 1.1.6 Solve mẍ(t) = F0 cos(ωt) (F0 is a constant with Newtons as it unit, ω is a

constant with unit of inverse seconds) for x(t) given x(0) = x0 and ẋ(0) = v0.

1.2 Taylor Expansion

To appreciate the role of the harmonic oscillator problem in physics, we need to review the

idea of expanding a function f(x) about a particular value x0 and apply it to minima of a

potential energy. We’ll start in this section with the former, called “Taylor expansion.” The

idea is to estimate f(x0+∆x) for small ∆x given the value of the function and its derivatives

at x0. Our first guess is that the function is unchanged at x0 + ∆x,

f(x0 + ∆x) ≈ f(x0). (1.12)

That’s a fine approximation, but can we improve upon it? Sure: if we knew f(x0) and

f ′(x0) ≡
df (x)

dx

∣
∣
∣
∣
x=x0

, (1.13)

then we could add in a correction associated with the slope of the line tangent to f(x0) at x0:

f(x0 + ∆x) ≈ f(x0) + f ′(x0)∆x. (1.14)

The picture of this approximation, with the initial estimate and the linear refinement is

shown in Figure 1.2.
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4 Harmonic Oscillator

x0

f(x0)

x0 + ∆x

f(x0 + ∆x)

f(x0)

f(x)

f(x0) + f (x0)∆x ≈ f(x0 + ∆x)

x

Fig. 1.2 Given a function f (x), if we know the value of the function and its derivative at x0, then we can estimate the value

at a nearby point x0 + ∆x for∆x small.

The process continues, we can take the quadratic correction, f ′′(x0)∆x 2, and use it to

refine further,

f(x0 + ∆x) ≈ f(x0) + f ′(x0)∆x +
1

2
f ′′(x0)∆x 2. (1.15)

You can keep going to any desired accuracy, with equality restored when an infinite number

of terms are kept,

f(x0 + ∆x) =

∞∑

j=0

1

j!

(
d j

dx j
f(x)

)∣
∣
∣
∣
x=x0

∆x j, (1.16)

although we rarely need much past the first three terms. Note that the first term that you

drop gives an estimate of the error you are making in the approximation. For example, if

you took only the first two terms in (1.15), you would know that the leading source of error

goes like f ′′(x0)∆x 2.

The hardest part of applying Taylor expansion lies in correctly identifying the function

f(x), the point of interest, x0, and the “small” correction ∆x. As an example, suppose we

wanted to evaluate
√

102, then we have f(x) =
√

x with x0 = 100 and ∆x = 2. Why pick

x0 = 100 instead of 101? Because it is easy to compute f(100) =
√

100 = 10, while for√
101 we have the same basic problem we started out with (i.e. I don’t know the value of√
101 any more than I know

√
102). Using (1.15) gives the estimate

f(100 + 2) ≈ f(100) + f ′(100)× 2 +
1

2
f ′′(100)× 4

=
√

100 +
1

2
√

100
× 2 −

1

2

1

4(100)3/2
× 4

= 10 +
1

10
−

1

2000
= 10.0995

(1.17)

while the “actual” value is
√

102 ≈ 10.099505.

Problem 1.2.1 Evaluate sin(∆x) and cos(∆x) for the values of ∆x given in the following

table using a calculator. Then use the Taylor expansions of these functions (to second

order, from (1.15)) to approximate their value at those same ∆x (assuming ∆x is
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5 Conservative Forces

small, an assumption that is violated by some of the values so you can see the error

in the approximations). Write out your results to four places after the decimal.

∆x sin(∆x) cos(∆x) sin(∆x) approx. cos(∆x) approx.

.1

.2

.4

.8

Problem 1.2.2 Use Taylor expansion to find the approximate value of the function f(x) =

(a + x)n for constants a and n with x0 = 0, i.e. what is f(∆x) for ∆x small (take only

the “leading-order” approximation, in which you just write out the Taylor expansion

through the ∆x term as in (1.14))? Using your result, give the Taylor expansion

approximation near zero (again, you’ll write expressions approximating f(∆x)) for:

f(x) =
√

1 + x ≈

f(x) =
1√

1 + x
≈

f(x) =
1

(1 + x)
2
≈

Problem 1.2.3 Estimate the value of 1/121 using Taylor expansion (to first order in the

small parameter) and compare with the value you get from a calculator. Hint:

121=(10+ 1)2.

Problem 1.2.4 For the function f(θ) = (1 + cos θ)
−1

, estimate f(π/2 + ∆θ) for ∆θ≪ 1

using (1.15). Try it again by Taylor expanding the cos θ function first, then expanding

in the inverse polynomial, a two-step process that should yield the same result (up to

errors that we have ignored in both cases).

1.3 Conservative Forces

The spring force starts off life as rusty bits of metal providing a roughly linear restoring

force. But the model’s utility in physics has little to do with the coiled metal itself. Instead,

the “harmonic” oscillator behavior is really the dominant response of a particle moving

near the equilibrium of a potential energy function. To review, a conservative force F comes

from the derivative of a potential energy U via:

F(x) = −
dU(x)

dx
. (1.18)

If we have a potential energy U(x) (from whatever physical configuration), then a point of

equilibrium is defined to be one for which the force vanishes. For xe a point of equilibrium,

F(xe) = 0 = −
dU(x)

dx

∣
∣
∣
∣
x=xe

≡ −U′(xe). (1.19)
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6 Harmonic Oscillator

Now if we expand the potential energy function U(x) about the point xe using Taylor

expansion:

U(x) = U((x − xe)
︸ ︷︷ ︸

≡∆x

+xe) = U(xe) + ∆xU′(xe) +
1

2
∆x 2U′′(xe) + · · · , (1.20)

then the first term is just a constant, and that will not contribute to the force in the vicinity

of xe (since we take a derivative with respect to x sitting inside ∆x to get the force). The

second term vanishes by the assumption that xe is a point of equilibrium, and the first

term that informs the dynamics of a particle moving in the vicinity of xe is the third term

∼ (1/2)U′′(xe)(x − xe)
2, leading to a force, near xe:

F(x) = −
dU(x)

dx
≈ −U′′(xe)(x − xe) + · · · (1.21)

The effective force in the vicinity of the equilibrium is just a linear restoring force with

“spring constant” k ∼ U′′(xe) (assuming U′′(xe) > 0 so that the equilibrium represents

a local minimum) and equilibrium spacing xe. A picture of a local minimum in the

potential energy and the associated force is shown in Figure 1.3. Near xe, the potential is

approximately quadratic, and the force is a linear restoring force of the sort we have been

studying. There is also an equilibrium point at the maximum of U(x) in that picture, but

the associated force tends to drive motion away from this second equilibrium. We call such

locations points of “unstable equilibrium,” even a small perturbation from the equilibrium

location drives masses away.

As an example, suppose we have somehow managed to set up a potential energy of the

form U(x) = U0 cos(2πx/ℓ) for a length ℓ and constant U0 > 0. What is the period of

motion for a particle that starts out “near” xe = ℓ/2? In this case, the equilibrium position

U(x)

F (x) = −U (x)

xe

x

xm

x

Fig. 1.3 A potential energy U(x) (lower plot) with associated force F(x) = −U
′(x) (upper). A minimum in the potential

has an approximately linear restoring force associated with it. We can approximate the force, in the vicinity of xe

(bracketed with dotted lines) by F(x) ≈ −U
′′(xe)(x − xe). The maximum at xm is also a point of equilibrium,

but this one is “unstable,” if a particle starts near xm it tends to get driven away from xm (the slope of the force

is positive).
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7 Conservative Forces

is at xe = ℓ/2, with U′(xe) = 0 as required. The second derivative sets the effective spring

constant, k = U′′(xe) = (2π/ℓ)2U0, and then the period and frequency of the resulting

oscillatory motion come from (1.9) and (1.10):

T = 2π

√
m

U′′(xe)
=

√

mℓ2

U0

f =

√

U0

mℓ2
. (1.22)

1.3.1 Conservation of Energy

It is worth reviewing the utility of conservation of energy. In particular, while we have

a complete solution to our problem, in (1.4), it is not always possible to find such a

complete solution. In those cases, we retreat to a “partial” solution, where we can still

make quantitative predictions (and hence physical progress), but we might not have the

“whole” story.

Let’s go back to Newton’s second law, this time for an arbitrary potential energy U(x),

but with initial values specified. Think of the ODE piece of the “problem”:

mẍ(t) = −
dU(x)

dx
. (1.23)

Now, the only ODEs that I can solve in closed form are ones in which both sides are a total

derivative, in this case, a total time-derivative. Then to integrate, you just remove the d
dt

from both sides, and add in a constant – that process returns a function for ẋ(t). Then, when

possible, you integrate again to get x(t) (picking up another constant). This direct approach

will be considered in Section 5.1.

Looking at the left side of (1.23), it is clear that we have a total time derivative:

mẍ(t)= d
dt
(mẋ(t)), but what about the right-hand side? Is there a function W(x) such that

dW(x(t))

dt
= −

dU(x)

dx
? (1.24)

The answer is no. The reason is clear: If we had a function evaluated at x(t), W(x(t)), then

the total time derivative of W would look like

dW(x(t))

dt
=

dW(x)

dx

dx(t)

dt
=

dW(x)

dx
ẋ(t) (1.25)

and there is no ẋ(t) that appears on the right in (1.23). The fix is easy, just put an ẋ(t) on

the right-hand side of (1.23), which requires putting one on the left-hand side as well. Then

Newton’s second law looks like

mẋ(t)ẍ(t) = −
dU(x)

dx
ẋ(t). (1.26)

The situation on the right is now very good, since we can write the right-hand side as a

total time derivative:

−
dU(x(t))

dt
= −

dU(x)

dx
ẋ(t). (1.27)
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8 Harmonic Oscillator

There is potential trouble on the left-hand side of Newton’s second law, though. Can

ẋ(t)ẍ(t) be written as a total time derivative? Yes, note that

d

dt

(
ẋ(t)2

)
= 2ẋ(t)ẍ(t). (1.28)

Just multiplying Newton’s second law by ẋ(t) on both sides has given us the integrable

equation

d

dt

(
1

2
mẋ(t)2

)

= −
dU(x(t))

dt
−→

1

2
mẋ(t)2 = −U(x(t)) + E (1.29)

where E is the constant of integration. We could re-write (1.29) as

1

2
mẋ(t)2 + U(x(t)) = E. (1.30)

This represents an interesting situation – the combination of the time-dependent terms on

the left yields a time in-dependent term on the right. Thinking about units (or dimensions,

if that’s what you are into) we have, in the first term of (1.30) a “kinetic” energy (energy

because of the units, kinetic because the term is associated with movement through its

dependence on ẋ(t)) and a “potential” energy (again from units, and the dependence on,

this time, position). The sum is a constant of the motion of the particle, E, the “total” energy

of the system. That is the statement of energy conservation expressed by (1.30). Because E

is a constant, we can set its value from the provided initial conditions: x(0) = x0, ẋ(0) = v0,

1

2
mv2

0 + U(x0) = E. (1.31)

The integration of Newton’s second law, in the presence of a “conservative” force, given

by (1.30) is notable for its predictive ability – if you tell me where the particle is, its location

at time t, x(t), I can tell you how fast it is moving. Using the constant value of E set by the

initial conditions for the motion (1.31), we can write (1.30) as

1

2
mẋ(t)2 + U(x(t)) =

1

2
mv2

0 + U(x0), (1.32)

and then

ẋ(t) = ±
[

v2
0 +

2

m
(U(x0)− U(x(t)))

]1/2

(1.33)

gives the speed (taking the positive root), at time t, of the particle at location x(t).

1.3.2 Harmonic Oscillator

The harmonic oscillator potential energy is just the quadratic U(x) = 1/2k(x − a)2 for

equilibrium location a. In this case, the quadratic expansion of U(x) about the equilibrium

consists of just the one term. We know what happens here: a particle oscillates about the

equilibrium value with frequency governed by
√

k/m. If you think of the graph of the

potential energy, we have a convex curve, and if you draw a line representing energy E as

in Figure 1.4, you can tell the “story of the motion”: where the value of E intersects the
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9 Conservative Forces

E

U(x)

x

Maximum speed occurs here

Particle at rest

F
or

bi
dd

enF
orbidden

Fig. 1.4 A particle with energy E moving in a quadratic potential well. The particle is at rest where E intersects the

potential energy function, and achieves its maximum speed where the diference between E and U(x) is largest.

E

U(x)

x

Fig. 1.5 A particle with energy E moving in a quadratic potential with a maximum. The particle cannot exist “underneath”

the potential energy curve.

potential energy, the particle must be at rest (all the energy is potential, none is kinetic), the

point at which the difference between E and U(x) is largest represents the position at which

the maximum speed of the particle occurs. Locations where U(x) > E are impossible to

achieve physically, since the kinetic energy would have to be negative.

What if the potential energy had the form U(x) = −1/2k(x − a)2, with a concave

graph? This time, a particle tends to move away from the equilibrium position, without

returning to it. Thinking of motion at a fixed E, as in Figure 1.5, the particle speeds up

as it gets further away from the equilibrium location. This is an example of an “unstable”

equilibrium, particles that start near a are driven away from it. For the usual harmonic

potential, with its + sign, the equilibrium point is “stable,” if you start near equilibrium,

you remain near it. In a more general potential energy landscape, the sign of the second

derivative of the potential energy function, evaluated at a point of equilibrium, determines

whether the equilibrium is stable (positive) or unstable (negative).
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10 Harmonic Oscillator

R

M

m

v
esc

R

M

∞

At rest m

Fig. 1.6 Amassm leaves the surface of the Earth with speed vesc and comes to rest ininitely far away.

1.3.3 Escape Speed

Conservation of energy can be used to make quantitative predictions even when the full

position of an object as a function of time is not known. As an example, consider a spherical

mass M of radius R. A test particle3 of mass m at a distance r ≥ R from the center of the

sphere experiences a force with magnitude

F =
GMm

r2
(1.34)

where G is the gravitational constant. This force comes from a potential energy U(r) =

−GMm/r. Suppose the test mass starts from the surface of the sphere with a speed vesc.

We want to know the minimum value for vesc that allows the test mass to escape the

gravitational pull of the spherical body. That special speed is called the “escape speed.”

Think of the spherical body as the earth, and the test mass is a ball that you throw up into

the air. The ball goes up and comes back down. If you throw the ball up in the air a little

faster, it takes longer to come down. The escape speed is the (minimum) speed at which

you must throw the ball up so that it never comes back down.

Formally, we want the test particle to reach r → ∞ where it will be at rest as shown on

the right in Figure 1.6.4 From (1.30), if we take “x(t) = r → ∞” with “ẋ(t) = ṙ → 0,” and

use the potential energy associated with gravity, we have E = 0. Going back to the initial

values, which must of course have the same energy,

1

2
mv2

esc + U(R) = E = 0, (1.35)

and then the escape speed can be isolated algebraically

vsc =

√

−
2

m
U(R) =

√

2GM

R
. (1.36)

3 “Test particle” is a technical term that means “a particle that feels the effect of a force without contributing to

it.” When we want to probe the gravitational force associated with some external body, we often imagine a test

particle’s response to that force. The same idea shows up in electricity and magnetism.
4 That’s the “minimum” part of the requirement. You could have the test particle rocketing around at spatial

infinity, but that excess speed is overkill.
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