EVOLUTION OF LEARNING AND MEMORY MECHANISMS

Evolution of Learning and Memory Mechanisms is an exploration of laboratory and field research on the many ways that evolution has influenced learning and memory processes, such as associative learning, social learning, and spatial, working, and episodic memory systems. This volume features research by both outstanding early-career scientists as well as familiar luminaries in the field. Learning and memory in a broad range of animals are explored, including numerous species of invertebrates (insects, worms, sea hares), as well as fish, amphibians, birds, rodents, bears, and human and nonhuman primates. Contributors discuss how the behavioral, cognitive, and neural mechanisms underlying learning and memory have been influenced by evolutionary pressures. They also draw connections between learning and memory and the specific selective factors that shaped their evolution. *Evolution of Learning and Memory Mechanisms* should be a valuable resource for those working in the areas of experimental and comparative psychology, comparative cognition, brain–behavior evolution, and animal behavior.

Mark A. Krause is Professor of Psychology at Southern Oregon University. He has served as Associate Editor of *Animal Behavior and Cognition*, and is co-author of *Introduction to Psychological Science* (2020).

Karen L. Hollis is Professor Emerita of Psychology at Mount Holyoke College. She served as President of APA's Divisions 3 and 6 and has received the Comparative Cognition Society Research Award for contributions to the field.

Mauricio R. Papini is Professor of Psychology at Texas Christian University. He was Editor of the *International Journal of Comparative Psychology* and is the author of *Comparative Psychology: Evolution and Development of Brain and Behavior, Third Edition* (2021).

Evolution of learning AND MEMORY MECHANISMS

Edited by

MARK A. KRAUSE Southern Oregon University

KAREN L. HOLLIS Mount Holyoke College

MAURICIO R. PAPINI

Texas Christian University

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781108487993 DOI: 10.1017/9781108768450

© Cambridge University Press 2022

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2022

A catalogue record for this publication is available from the British Library.

ISBN 978-1-108-48799-3 Hardback ISBN 978-1-108-73831-6 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

CONTENTS

List of Figures	page ix
List of Tables	xiii
List of Contributors	xv
Preface	xix
INTRODUCTION: PERSPECTIVES ON THE EVOLUTION OF LEARNIN AND MEMORY MECHANISMS Mark A. Krause, Karen L. Hollis, and Mauricio R. Papini	IG 1
PART I EVOLUTION OF LEARNING PROCESSES	
LEARNING AND MEMORY IN THE NEMATODE CAENORHABDITIS ELEGANS Alex J. Yu and Catharine H. Rankin	15
2 ADAPTIVE EVOLUTION OF LEARNING AND MEMORY IN A MODEL LINEAGE William G. Wright	33
3 LEARNING IN INSECTS: PERSPECTIVES AND POSSIBILITIES Alexis Lillian Kriete and Karen L. Hollis	52
4 EXPERIMENTAL EVOLUTION AND MECHANISMS FOR PREPARED LEARNING Aimee S. Dunlap and Andreia F. Dexheimer	71
5 EVOLUTIONARY PROCESSES SHAPING LEARNING ABILITY IN INSECTS Maartje Liefting	89

v

vi	*			Contents
		6	BRAIN AND SPATIAL COGNITION IN AMPHIBIANS: STEM ADAPTATIONS IN THE EVOLUTION OF TETRAPOD COGNITION Rubén N. Muzio and Verner P. Bingman	105
		7	PAVLOVIAN CONDITIONING, SURVIVAL, AND REPRODUCTIVE SUCCESS Mark A. Krause and Michael Domjan	125
		8	COMPENSATORY RESPONSES TO WILDLIFE CONTROL: THEORETICAL CONSIDERATIONS AND EMPIRICAL FINDINGS FROM THE INVASIVE COMMON MYNA Andrea S. Griffin and Marie C. Diquelou	143
		9	RELATIONAL MEMORY FUNCTIONS OF THE HIPPOCAMPAL PALLIUM IN TELEOST FISH Antonia Gómez, Francisco M. Ocaña, Tamara del Águila, Fernando Rodríguez, and Cosme Salas	159
		10	MECHANISMS UNDERLYING ABSOLUTE AND RELATIVE REWARD VALUE IN VERTEBRATES Mauricio R. Papini	176
		11	THE OPTIMALITY OF "SUBOPTIMAL" CHOICE: A PSYCHO-EVOLUTIONARY PERSPECTIVE Patrick Anselme	193
		12	A BEHAVIOR SYSTEMS FRAMEWORK: WHAT IT IS AND HOW TO USE IT Kathleen M. Silva and Francisco J. Silva	210
		13	DISSOCIABLE LEARNING PROCESSES: A COMPARATIVE PERSPECTIVE Barbara A. Church, Brooke N. Jackson, and J. David Smith	227
		14	SOCIAL LEARNING STRATEGIES Rachel L. Kendal	247
		15	HOW LEARNING AFFECTS EVOLUTION Kevin Laland, Thomas Oudman, and Wataru Toyokawa	265
		PAF	RT II EVOLUTION OF MEMORY PROCESSES	
		16	THE EVOLUTION OF MEMORY AS AN IMMEDIATE PERCEPTUA IDENTIFICATION MECHANISM Michael S. Fanselow	L 285

Contents		*	vii
17 EPISODIC MEMORY IN ANIMALS Jonathon D. Crystal	302		
18 EVOLUTIONARY ORIGINS OF COMPLEX COGNITION Alexandra K. Schnell and Nicola S. Clayton	317		
19 EVOLUTION OF MEMORY SYSTEMS IN ANIMALS Johan Lind, Stefano Ghirlanda, and Magnus Enquist	339		
20 what laboratory and field approaches bring to bear for understanding the evolution of ursid cognition Jennifer Vonk	359		
21 DISTINGUISHING MECHANISMS OF BEHAVIORAL INHIBITION AND SELF-CONTROL Michael J. Beran and Audrey E. Parrish	375		
22 METACOGNITIVE MONITORING AND CONTROL IN MONKEYS Robert R. Hampton	392		
23 ADAPTIVE MEMORY: FITNESS-RELEVANT TUNINGS IN HUMAN MEMORY James S. Nairne and Michelle E. Coverdale	406		
24 REMEMBERING CHEATERS: THE INFLUENCE OF SOCIAL RELEVANCE ON SOURCE MEMORY Meike Kroneisen	424		
25 DEVELOPMENT OF MEMORY CIRCUITS UNDER EPIGENETIC REGULATION Ji-Song Guan	438		
26 CONSTRAINTS ON LEARNING AND MEMORY: A RESOLUTION Aaron P. Blaisdell and Benjamin M. Seitz	454		
Index	473		

FIGURES

2.1	Evolution of neuromodulatory traits is correlated with
	behavioral (learning) phenotypes page 34
2.2	Long-term sensitization (lasting more than 24 hours) and neural
	correlates after four lobster attacks
2.3	Individuals of Dolabrifera emerge immediately upon the daytime
	ebbing tide dropping below their pool level
4.1	A subset of predictions for the flag model of preparedness
4.2	Data from Dunlap and Stephens (2014) showing the results of
	learning tests for fly lines within each treatment after
	40 generations of selection, from which we calculate the
	proportion of choices consistent with learning
5.1	Simulated population data for variation in learning ability
	measured with a memory score, assuming a normal distribution
	of phenotypes
6.1	Evolutionary reconstruction of the three amphibian orders
	(Anura, Urodela, and Apoda) in relation to amniotes
6.2	Summary of results contrasting the importance of boundary
	geometry and visual feature cues for the goal navigation behavior
	of the Terrestrial toad Rhinella arenarum114
6.3	Nissl-stained coronal sections through the telencephalon
	of a representative (a) frog (Xenopus laevis, African clawed frog),
	(b) toad (Rhinella arenarum, terrestrial toad) and
	(c) salamander (<i>Pleurodeles wartl</i> , the Iberian ribbed newt)
	species highlighting the location and cytoarchitecture
	of the homologue of the mammalian hippocampus, the
	medial pallium
6.4	Summary of the more important results involving the
	medial pallium of the Terrestrial toad Rhinella arenarum
	originating from recent experiments carried out in the
	Muzio laboratory

х

*

Cambridge University Press & Assessment 978-1-108-48799-3 — Evolution of Learning and Memory Mechanisms Edited by Mark A. Krause , Karen L. Hollis , Mauricio R. Papini Frontmatter <u>More Information</u>

List of Figures

7.1	Conditioned stimuli used in various experiments on conditioned
	sexual behavior in Japanese quail (Coturnix japonica) 128
7.2	Mean (+SE) seconds spent near the probe stimulus (left panel)
	semen volume (middle panel) and number of spermatozoa (right
	panel) released upon exposure to distinctive contextual cues in
	male quail
7.3	Modification of the sexual behavior system for males by
	Pavlovian conditioning
7.4	The response profile for sexual learning in females137
8.1	Locomotion expressed in the feeding cage by experimental
	observer mynas that viewed the capture of a conspecific by a
	human during observational training, and control observer
	mynas that watched a human wave a net with no myna present,
	both before (pretest, open bars) and after (post-test, black bars)
	observational training150
8.2	Kaplan-Meier survival curves of the latency of mynas to feed
	number of alarm calls emitted by common mynas during
	pre-demonstration trials152
8.3	Mean (\pm SE) number of alarm calls emitted by common mynas
	during pre-demonstration trials (large open circle) and during
	post-demonstration trials (large gray closed circle) as a function
	of the human identity
9.1	Map-like spatial memory in teleost fish
9.2	Hippocampal pallium and map-like memories in teleost fish 166
9.3	The goldfish hippocampal pallium is essential for associating
	temporally discontiguous events
10.1	Free choice between food pellets when the other option is either
	2% or 30% sucrose (left panel)
10.2	Consummatory behavior (time licking at a tube delivering
	sucrose) in two species of didelphid marsupials, <i>Didelphis</i>
	albiventris (D.a., left picture) and Lutreolina crassicaudata (L.c.,
	right picture) $\dots \dots \dots$
10.3	A representation of the carry-over mechanism (top) and the
	cued-recall mechanism (bottom) $\dots \dots \dots$
10.4	The effects of reward downshift in toads (<i>Rninella arenarum</i>)
	and pigeons (<i>Columba livia</i>)
11.1	Representative illustration of a free choice in the SOC procedure
	With pigeons
11.2	Evidence that pigeons choose the initial link depending on the
	reliability of the CS in the terminal link (modified from Smith
	and Zentall, 2016)
12.1	(A) Representation of the sequence of search modes related to a
	ratis predation subsystem (Timberiake & Lucas, 1989) and (B)
	now those modes may be expressed in a laboratory study of
	Paviovian conditioning

List of Figures

xi

*

13.1	Information-integration (A) and rule-based (B) category
	structures, depicted within an abstract 100×100 stimulus space230
13.2	I raining generalization information-integration and rule-based
	category structures, depicted in the same way as Figure 13.1A
	and B
13.3	The decision bounds that provided the best fits to the last
	100 responses of participants in the (A) zero-back – rule-based,
	(B) one-back – rule-based, (C) zero-back – information-
	integration, and (D) one-back – information-
	integration conditions 238
13.4	The decision bounds that provided the best fits to the last
	100 responses of the four conditions (A–D) of Smith et al. (2014) 240
16.1	Rats received shock in a one context at different intervals
	between placement in the context and shock 290
16.2	The percentage of time rats spent either freezing or moving
	during the first minute of exposure to a cat
16.3	A cat was placed in the chamber at the same time (Immediate
	Group) or two minutes after (Delayed Group) the rat
17.1	Dissociating episodic item-in-context memory from
	familiarity cues
17.2	Rats replay a stream of multiple episodic memories
18.1	Phylogenetic tree depicting the evolutionary divergence between
	apes, corvids, and cephalopods
18.2	Examples of tool-use in diverse taxa
19.1	Results from DMTS experiments
19.2	Selected results from sequence discrimination studies
	(Ghirlanda et al., 2017)
19.3	Illustration of the memory trace model for sequence
	discrimination (Ghirlanda et al., 2017)
21.1	Mechanisms and tasks relevant to studying self-control
22.1	Taxonomy of human memory systems
22.2	A memory-monitoring paradigm for detecting explicit memory
	in monkeys
22.3	Dynamic cognitive monitoring of decision-making
23.1	Cohen's d effect sizes for survival processing advantage relative
	to a variety of control conditions
23.2	Instructions and subsequent recall for two matched hunting
	scenarios (from Nairne et al., 2009) that differ only in the context
	of the hunting activity (either for survival or for a contest)410
23.3	Recall of matched animate and inanimate words (from Nairne
	et al., 2013)
24.1	Source memory as a function of the context in which the face
	was encountered (cheater, neutral, cooperator) across
	four experiments

xii *

List of Figures

25.1	Epigenetic mechanisms that regulate the development of
	memory circuits in the brain
26.1	CS-US interval functions in various Pavlovian conditioning
	procedures (adapted from Rescorla, 1988)
26.2	Mean memory performance for four-item serial lists at different
	probe delays (retention intervals), the interval between the last
	item (labeled 4) and the probe test item
26.3	Cladogram of phylogenetic relationships of six marine mollusks
	and physiological traits underlying simple learning (based on
	Wright et al., 1996)

TABLES

3.1	Associative learning in insects (Class: Insecta) page 53
14.1	The classification scheme of cognitive heuristics or "rules of
	thumb" known variously as social learning strategies or
	transmission biases in the social learning field
16.1	Assumptions that allow Pavlovian conditioning to serve as a
	mechanism of immediate perceptual identification (MIPI) 295
19.1	Some studies of animal general-purpose long-term memory in
	which performance showed little or no decline after a prolonged
	interval without training
24.1	Example behavior descriptions from Buchner et al. (2009) 426
25.1	Major category of epigenetic regulators and their specific roles in
	learning and memory

xiii

CONTRIBUTORS

Tamara del Águila, Laboratory of Psychobiology, University of Sevilla, Spain

Patrick Anselme, Faculty of Psychology, Department of Biopsychology, Ruhr-University Bochum, Germany

Michael J. Beran, Department of Psychology and Language Research Center, Georgia State University, USA

Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, USA

Aaron P. Blaisdell, Department of Psychology, University of California-Los Angeles, USA

Barbara A. Church, Language Research Center, Georgia State University, USA

Nicola S. Clayton, Department of Psychology, University of Cambridge, UK

Michelle E. Coverdale, Department of Psychological Sciences, Purdue University, USA

Jonathon D. Crystal, Department of Psychological and Brain Sciences, Indiana University, USA

Andreia F. Dexheimer, Department of Biology, University of Missouri-Saint Louis, USA

Marie C. Diquelou, School of Psychology, University of Newcastle, Australia

Michael Domjan, Department of Psychology, University of Texas at Austin, USA

Aimee S. Dunlap, Department of Biology, University of Missouri-Saint Louis, USA

Magnus Enquist, Centre for Cultural Evolution and Department of Zoology, Stockholm University, Sweden

Michael S. Fanselow, Department of Psychology, University of California-Los Angeles, USA

xvi *

Contributors

Stefano Ghirlanda, Department of Psychology, Brooklyn College, USA and Centre for Cultural Evolution, Stockholm University, Sweden

Antonia Gómez, Laboratory of Psychobiology, University of Sevilla, Spain

Andrea S. Griffin, School of Psychology, University of Newcastle, Australia

Ji-Song Guan, School of Life Science and Technology, Shanghai Tech University, China

Robert R. Hampton, Psychology Department and Yerkes National Primate Research Center, Emory University, USA

Karen L. Hollis, Department of Psychology and Interdisciplinary Program in Neuroscience and Behavior, Mount Holyoke College, USA

Brooke N. Jackson, Language Research Center, Georgia State University, USA

Rachel L. Kendal, Department of Anthropology, Durham University, UK

Mark A. Krause, Department of Psychology, Southern Oregon University, USA

Alexis Lillian Kriete, Department of Entomology and Plant Pathology, College of Agriculture and Life Sciences, North Carolina State University, USA

Meike Kroneisen, Department of Psychology, University of Koblenz-Landau, Germany

Kevin Laland, School of Biology, St Andrews University, UK

Maartje Liefting, Applied Zoology and Animal Ecology, Freie Universität Berlin, Germany

Johan Lind, Centre for Cultural Evolution, Stockholm University, Sweden

Rubén N. Muzio, Comparative Learning and Cognition Group, Biology of Behavior Laboratory, IBYME-CONICET, and Faculty of Psychology, University of Buenos Aires, Argentina

James S. Nairne, Department of Psychological Sciences, Purdue University, USA

Francisco M. Ocaña, Laboratory of Psychobiology, University of Sevilla, Spain

Thomas Oudman, School of Biology, St Andrews University, UK

Mauricio R. Papini, Department of Psychology, Texas Christian University, USA

Audrey E. Parrish, Department of Psychology, The Citadel, USA

Catharine H. Rankin, Department of Psychology, University of British Columbia, Canada

Fernando Rodríguez, Laboratory of Psychobiology, University of Sevilla, Spain

Cosme Salas, Laboratory of Psychobiology, University of Sevilla, Spain

Alexandra K. Schnell, Department of Psychology, University of Cambridge, UK

Contributors

* xvii

Benjamin M. Seitz, Department of Psychology, University of California-Los Angeles, USA

Francisco J. Silva, Department of Psychology, University of Redlands, USA

Kathleen M. Silva, Department of Psychology, University of Redlands, USA

J. David Smith, Department of Psychology, Georgia State University, USA

Wataru Toyokawa, School of Biology, St Andrews University, UK; now at Social Psychology and Decision Sciences, University of Konstanz, Germany

Jennifer Vonk, Department of Psychology, Oakland University, USA

William G. Wright, Life and Environmental Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, USA

Alex J. Yu, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Canada

PREFACE

Volumes like this one often come about because scholars with a shared scientific interest agree that the time has come to synthesize the current status of their field of study. Here, that scientific interest centers on understanding how evolutionary processes influence the ways in which organisms learn and remember. Although a common theme is shared, the approaches taken are quite varied. Researchers examining Pavlovian conditioning in worms, cultural transmission of behavior in chimpanzees, and episodic memory in humans, for example, each pursue answers to questions of both how and why learning and memory processes have evolved, although their approaches to doing so are widely different. In addition, researchers of these topics may rarely interact, even though their subject matter shares a common theme. The purpose of this volume is to feature the diverse ways in which scientists have approached this topic, and, hopefully, in so doing provide readers with solid grounding on current methods and results from both laboratory and field experiments on learning and memory in animals, including humans.

We have been fortunate to assemble an amazing group of contributors to this volume. Each has discovered something fascinating about the evolution of learning and memory, and has something important to share. We are grateful that the authors of each chapter of this book agreed to collaborate on the effort, and we appreciate their hard work. When we proposed the project to Cambridge University Press, and as we began inviting authors to contribute, we received feedback that was music to our ears. People told us that this book was one of a kind, which naturally is exactly what we, and Cambridge University Press, wanted to hear. Our colleagues had positive remarks on the mixture of scientific backgrounds represented (e.g., within psychology and biology). The comment "I wish a book like this was available when I was starting out" certainly resonated with us, and we hope that a new generation of scientists-in-training will find inspiration in these pages.

xix

XX

*

Preface

Despite our early success in securing contributors to the book, the next steps in our path were not easy. Of course, one always expects challenges to major undertakings such as this. But at the outset we would have hardly expected a global pandemic to be among them. It is hard for us to sufficiently express our gratitude to the contributors to this volume. The coronavirus pandemic hit right in the middle of the project timeline. We all abruptly found ourselves in quarantine, worrying about our health and that of our loved ones, fighting to keep laboratories running, pivoting to online teaching, homeschooling children, protecting vulnerable friends and family members, and absorbing the pain and frustration of watching a large segment of the public refusing to acknowledge science. One of us (MK) lost his home and entire neighborhood to a wildfire in September 2020. We all watched helplessly, forced to the sidelines, as friends and colleagues contracted the virus; although many, thankfully, recovered, others did not.

So, it is with our utmost pleasure and pride that we have seen this project to completion. We sincerely thank Stephen Acerra and Emily Watton at Cambridge University Press for their editorial assistance and consultation throughout the course of this project; too often the rigor and feedback that go into creating an edited volume like this are overlooked. We are grateful to the anonymous reviewers of our proposal for their helpful comments and suggestions, as well as members of the Academic Press Board at Cambridge who decided that our proposal merited our efforts to make this book happen. Mark A. Krause thanks Gordon Burghardt (University of Tennessee-Knoxville) and Michael Domjan (University of Texas-Austin) for the wonderful years of collaboration and mentorship on the topics of learning, behavior, and evolution. Karen L. Hollis thanks Bruce Overmier (Professor Emeritus, University of Minnesota-Minneapolis) for more than 50 years of wise and caring mentorship, unshakable support, and deep and enduring friendship. Mauricio R. Papini thanks Jeff Bitterman (University of Hawaii-Manoa) and Bruce Overmier for their mentorship, guidance, support, and friendship.