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Examples of Exact Bellman Functions

1.1 A Toy Problem

Let us start by considering the following simple problem. Suppose we have

two positive functions f1 and f2 on an interval I, I ⊂ R, bounded, say, by 1

and having prescribed averages: 〈fi〉I = xi. We are interested in their scalar

product: how large or how small it can be. That is, we would like to find the

following two functions:

B
max(x1, x2)

def
= sup {〈f1f2〉I : 0 ≤ fi ≤ 1, 〈fi〉I = xi} (1.1.1)

B
min(x1, x2)

def
= inf {〈f1f2〉I : 0 ≤ fi ≤ 1, 〈fi〉I = xi} (1.1.2)

These functions will be called the Bellman functions of the correspond-

ing extremal problem. In this simple case, the functions can be found by

elementary consideration without using any special techniques. Nevertheless,

we approach this problem as “a serious one” and provide all the steps in

its derivation that we will need in the future consideration of more serious

problems.

In what follows, we will consider only the first of these functions, and it

will be denoted simply by B rather than B
max. The first question is about the

domain of definition of our function. It is natural to define it on the set of all

x = (x1, x2) ∈ R
2 for which there exists at least one pair of test functions f1

and f2 such that 〈fi〉I = xi.

Definition 1.1.1 For a pair of functions {f1, f2} from L1(I), we call the

point bf1,f2 ∈ R
2,

b = bI(f1, f2)
def
= (〈f1〉I , 〈f2〉I ),

1
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2 1 Examples of Exact Bellman Functions

the Bellman point of this pair. Very often, the pair of functions is fixed and we

are interested in the dependence of the Bellman point on the interval. Then we

omit arguments and use only the interval as the index:

bJ = (〈f1〉J , 〈f2〉J ) for any interval J , J ⊂ I .

Clearly, the Bellman points of all admissible pairs fill the square

Ω = {x = (x1, x2) : 0 ≤ xi ≤ 1} .

Of course, function B is formally defined outside the square Ω as well, but

it is not interesting to consider this function there because the supremum

of the empty set is −∞. Let us state this assertion as a formal proposition.

It is trivial in this case, but it might not be so trivial for a more serious

problem.

Proposition 1.1.2 (Domain of Definition) The function B is defined on the

domain Ω.

Proof On the one hand, for any pair of test functions f1, f2, we have 0 ≤

〈fi〉I ≤ 1, i.e., bI(f1, f2) ∈ Ω. On the other hand, for any x ∈ Ω, the pair of

constant functions fi ≡ xi is an admissible pair and bI(x1, x2) = x.

Proposition 1.1.3 (Independence on the Interval) The function B does not

depend on the interval I , where the test functions are defined.

Proof Indeed, if we have two intervals I1 and I2, then the linear change of

variables maps the set of test functions from one interval to another preserving

all averages. Therefore, for both intervals, the supremum in the definition of

the Bellman function is taken over by the same set.

We know the values of our function on the boundary ∂Ω.

Proposition 1.1.4 (Boundary Conditions)

B(0, x2) = 0, B(1, x2) = x2,

B(x1, 0) = 0, B(x1, 1) = x1.
(1.1.3)

Proof We easily know the boundary values because for these points, the

set, over which supremum in the definition of the Bellman function is taken,

consists of only one element. Indeed, if 〈fi〉I = 0, then fi = 0 almost

everywhere (because fi ≥ 0), and therefore, 〈f1f2〉I = 0. If 〈fi〉I = 1, then

fi = 1 almost everywhere (because fi ≤ 1), and hence, 〈fifj〉I = xj .
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1.1 A Toy Problem 3

Our function possesses an additional symmetry property:

Proposition 1.1.5 (Symmetry)

B(x1, x2) = B(x2, x1) . (1.1.4)

Proof We can interchange the roles of f1 and f2 without changing the value

of 〈f1f2〉I . Then we interchange x1 and x2 keeping the value of the Bellman

function stable.

Proposition 1.1.6 (Main Inequality) For every pair of points x± from Ω and

every pair of positive numbers α± such that α− + α+ = 1, the following

inequality holds:

B(α−x− + α+x+) ≥ α−
B(x−) + α+

B(x+). (1.1.5)

Proof Let us split the interval I into two parts: I = I− ∪ I+ such that |I±| =

α±|I|. The integral in the definition of B can be presented as a sum of two

integrals, the first over I− and the second over I+:
∫

I

f1(s)f2(s) ds =

∫

I−

f1(s)f2(s) ds+

∫

I+

f1(s)f2(s) ds.

After dividing over |I| we get

〈f1f2〉I = α−〈f1f2〉
I−

+ α+〈f1f2〉
I+

.

Now, using the independence of the Bellman function on the interval (Propo-

sition 1.1.3), we choose functions f±
i on the intervals I± such that they almost

give us the supremum in the definition of B(x±), i.e.,

〈f±
1 f±

2 〉
I±

≥ B(x±)− η,

for a fixed small η > 0. Then for the functions fi(s), i = 1, 2, on I , defined

as f+
i on I+ and f−

i on I−, we obtain the inequality

〈f1f2〉I ≥ α−
B(x−) + α+

B(x+)− η. (1.1.6)

Observe that the pair of the compounded functions fi is an admissible pair of

test function corresponding to the point x = α−x− + α+x+. Indeed, x± =

bI±(f±
1, f

±
2 ) = bI±(f1, f2), and therefore,

bI(f1, f2) = α−
bI−(f1, f2) + α+

bI+(f1, f2) = α−x− + α+x+ = x.

The inequality 0 ≤ fi ≤ 1 is clearly fulfilled as well. So, we can take

supremum in (1.1.6) over all admissible pairs of functions. This yields

B(x) ≥ α−
B(x−) + α+

B(x+)− η,

which proves the main inequality because η is arbitrarily small.
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4 1 Examples of Exact Bellman Functions

Proposition 1.1.7 (Obstacle Condition)

B(x) ≥ x1 · x2. (1.1.7)

Proof Since the constant functions fi = xi belong to the set of admissible

test functions corresponding to the point x, we come to the desired inequality

sup{〈f1f2〉 : 〈fi〉I = xi} ≥ 〈x1x2〉I = x1x2.

Before stating the next proposition, we introduce some notation. Let I be a

family of subintervals of an interval I with the following properties:

• I ∈ I;

• if J ∈ I, then there is a couple of almost disjoint intervals J± (i.e., with

the disjoint interiors), such that J = J− ∪ J+;

• I = ∪n≥0In, where I0 = {I}, In+1 = {J−, J+ : J ∈ In};

• limn→∞ max{|J | : J ∈ In} = 0.

If the family I satisfies the following additional condition

• |J−| = |J+|,

it is called dyadic. For the dyadic family of subintervals, we use notation D(I)

instead of I.

Proposition 1.1.8 (Bellman Induction) If B is a continuous function on the

domain Ω satisfying the main inequality (that is just concavity condition) and

obstacle condition (1.1.7), then B(x) ≤ B(x).

Proof Fix an interval I and its splitting I. Take an arbitrary point x ∈ Ω and

two test function f1 and f2 on I, 0 ≤ fi ≤ 1, such that x = bI(f1, f2). We

can rewrite the main inequality in the form

|J |B(bJ )| ≥ |J+|B(bJ+) + |J−|B(bJ−).

Let us take the sum of the earlier inequalities when J runs over Ik, the set of

subintervals of kth generation. Then J± are all intervals of the set Ik+1, and

we get
∑

J∈Ik

|J |B(bJ ) ≥
∑

J∈Ik+1

|J |B(bJ ).

Therefore,

|I|B(x)| = |I|B(bI) =
∑

J∈I0

|J |B(bJ ) ≥
∑

J∈In

|J |B(bJ ) =

∫

I

B(x(n)(s)) ds,

where x(n) is a step function defined in the following way: x(n)(s) = bJ , when

s ∈ J, J ∈ In.
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1.1 A Toy Problem 5

We know that x(n)(s) → (f1(s), f2(s)) almost everywhere by the Lebesgue

differentiation theorem. Since B is continuous, we have B(x(n)(s)) →

B(f1(s), f2(s)). Now, using the obstacle condition (1.1.7) and the Lebesgue

dominated convergence theorem, we can pass to the limit in the obtained

inequality as n → ∞.

|I|B(x) ≥

∫

I

B(f1(s), f2(s)) ds ≥

∫

I

f1(s)f2(s) ds = |I|〈f1f2〉I . (1.1.8)

Taking supremum in this inequality over all admissible pairs f1, f2 with

bI(f1, f2) = x, we come to the desired estimate.

According to this proposition, every concave function satisfying the obstacle

condition gives us an upper estimate of the functional under consideration. If

we are interested in a sharp estimate, we need to look for minimal possible

such functions. Due to the symmetry (see Proposition 1.1.5), it is sufficient to

consider x1 ≤ x2.

On a triangle, we know our function at the vertices: B(0, 0) = 0, B(0, 1) =

0, and B(1, 1) = 1. The minimal possible concave function passing through

the given three points is a linear function. In our case, it is the function B(x) =

x1. By the symmetry on the whole square Ω, we get the following Bellman

candidate1 B(x) = min{x1, x2}.

In fact, we have already found the Bellman function.

Theorem 1.1.9

B(x) = min{x1, x2}.

Proof First of all, by Proposition 1.1.8, the upper estimate B(x) ≤ B(x) is

true because B is concave and min{x1, x2} ≥ x1x2. Since there is no concave

function satisfying the required boundary condition and that is less than B, we

get B = B.

However, in a more difficult problem, it is not so clear that the Bellman

candidate cannot be diminished. By this reason, we demonstrate on this

example how we will typically prove the lower estimate B(x) ≥ B(x).

To this end for every point x ∈ Ω, we present an admissible test function,

realizing the supremum in the definition of the Bellman function. In some

papers, such a function (in our case, it is a pair of functions) is called an

extremizer, but in other papers it is called an optimizer. We shall use both

these words as synonyms. In our case, the possible pair of extremizers is very

1
Such a term is used for a function possessing the necessary properties of the Bellman function,
e.g., concavity, symmetry, boundary values, etc. After a Bellman candidate is presented, we
need to check that it indeed is the desired Bellman function.
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6 1 Examples of Exact Bellman Functions

simple: fi = 1
[0,xi]

. We evidently have 〈fi〉[0,1] = xi and 〈f1f2〉[0,1] =

min{xi}. Since by definition B(x) is the supremum of 〈f1f2〉[0,1] , when fi
runs over all admissible pairs corresponding to the point x, B(x) is not less

that this particular value, which is equal to min{xi} = B(x).

At the end of this section, we would like to explain how to find the

extremizers mentioned earlier. Look at the proof of Proposition 1.1.8. Let us

take B = B in this chain of inequalities choosing at the beginning f1, f2
to be a pair of extremizers. Since the first and the last terms in the chain

of inequalities (1.1.8) are equal, namely, they are |I|B(x), we must have

equalities in each step. In other words, we need to choose such a splitting

x = α−x− + α+x+ to have equality rather than inequality in (1.1.5). In our

case, it is easy to do because our Bellman candidate is a concatenation of two

linear functions, and if we deal only with one of these linear functions, we

always have equality in (1.1.5). Based on this reason, in this simple situation,

we can choose extremizers in an almost arbitrary way; the only condition is that

all three points x and x± must be in the same triangle: either in {x : x1 ≤ x2}

or in {x : x1 ≥ x2}.

Let us construct a pair of optimizers for some point x with x1 ≤ x2. First

we draw the straight line passing through the points x and x− def
= (1, 1). It

intersects the boundary of Ω at the point (0, x2−x1

1−x1
)

def
= x+. So, we have

x = x1 · x− + (1 − x1) · x
+, i.e., α− = x1, α+ = 1 − x1, and we

need to split our initial interval I (take I = [0, 1]) in the union I− = [0, x1]

and I+ = [x1, 1]. The point x− = (1, 1) is the Bellman point of the

only pair f1 = f2 = 1, hence on [0, x1] we take both extremal functions

equal identically to 1. The point x+ = (0, x2−x1

1−x1
) is the Bellman point,

for example, the pair of constant functions, and we can put f1 = 0 and

f2 = x2−x1

1−x1
on [x1, 1]. It is easy to check whether this pair of functions

gives us an extremizer. However, the second function of this extremizer differs

from that presented earlier. What to do to get that extremizer? We only have

to split I+ once more, presenting x+ as the convex combination of (0, 1)

and (0, 0):

x+ =
x2 − x1

1− x1
(0, 1) +

1− x2

1− x1
(0, 0), I+ = [x1, 1] = [x1, x2] ∪ [x2, 1].

The function f1 is, as before, the zero function on both subintervals, but we

have to take f2 equal to 1 on [x1, x2] and equal to 0 on [x2, 1]. In this way, we

come to the pair of functions presented earlier.

We would like to provide support now to the readers for whom the latter

paragraph remains unclear: you meet such kind of construction (splitting the
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1.2 Buckley Inequality 7

interval and representing a Bellman point as a convex combination of two (or

more) other Bellman points) many times on the pages of this book. We hope

that after several repetitions, the construction becomes absolutely clear.

Exercises

Problem 1.1.1 Find the function B defined for a similar problem, where the

restriction 0 ≤ fi ≤ 1 is replaced by |fi| ≤ 1

Problem 1.1.2 Find the function B
min defined in (1.1.2).

Problem 1.1.3 Find the function B
min for the set of test functions described

in Problem 1.1.1.

1.2 Buckley Inequality

For an interval I and a number r > 1, the symbol A∞(I, r) denotes the

r-“ball” in the Muckenhoupt class A∞:

A∞(I, r)
def
=

{

w : w ∈ L1(I), w ≥ 0, 〈w〉
J
≤ re〈logw〉

J ∀J ⊂ I
}

.

(1.2.1)

We denote by D(I) the set of all dyadic subintervals of I and by Ad
∞(I, r) the

dyadic analog of (1.2.1), i.e., in the definition of Ad
∞(I, r), we consider only

J ∈ D(I).

Theorem (Buckley [19]) There exists a constant c = c(r) such that

∑

J∈D(I)

|J |
( 〈w〉

J+ − 〈w〉
J−

〈w〉
J

)2

≤ c(r)|I|

for any weight w from Ad
∞(I, r).

Now, we are ready to introduce the main object of our consideration, the

so-called Bellman function of the problem.

B(x) = B(x1, x2; r)

def
= sup
w∈Ad

∞(I,r)

{

1

|I|

∑

J∈D(I)

|J |

(

〈w〉
J+ − 〈w〉

J−

〈w〉
J

)2

:

〈w〉
I
= x1, 〈logw〉I = x2

}

.

(1.2.2)
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8 1 Examples of Exact Bellman Functions

Let us note that we did not assign the index I to B despite the fact that all

test functions w in its definition are considered on I . This omission is not due

to our desire to simplify notation, but rather an indication of the very important

fact that the function B does not depend on I; Proposition 1.1.3 holds in this

situation by the same reason.

For a given weight w ∈ Ad
∞(I, r), we introduce a Bellman point bI(w)

in the following way: bI(w) = (〈w〉
I
, 〈logw〉

I
). Note that for all admissible

weights and for any dyadic subinterval J ⊂ I , the corresponding Bellman

point bJ (w) is in the following domain Ωr:

Ωr
def
=

{

x = (x1, x2) : log
x1

r
≤ x2 ≤ log x1

}

.

Indeed, the right bound is simply Jensen’s inequality and the left one is fulfilled

because our weight w is from Ad
∞(I, r).

To show that Ωr is the domain of the function B, we need to check that for

any point x ∈ Ωr there exists an admissible weight with bI(w) = x. However,

we leave this for the reader as an exercise (see Problem 1.2.1).

Now we prove the crucial property of the function B that follows directly

from its definition.

Lemma 1.2.1 (Main Inequality) For every pair of points x± from Ωr such

that their mean x = (x+ + x−)/2 is also in Ωr, the following inequality

holds:

B(x) ≥
B(x+) +B(x−)

2
+

(

x+
1 − x−

1

x1

)2

. (1.2.3)

Proof Let us split the sum in the definition of B into three parts: the sum

over D(I+), the sum over D(I−), and an additional term corresponding to I

itself:

1

|I|

∑

J∈D(I)

|J |

(

〈w〉
J+ − 〈w〉

J−

〈w〉
J

)2

=
1

2|I+|

∑

J∈D(I+)

|J |

(

〈w〉
J+ − 〈w〉

J−

〈w〉
J

)2

+
1

2|I−|

∑

J∈D(I−)

|J |

(

〈w〉
J+ − 〈w〉

J−

〈w〉
I

)2

+

(

〈w〉
I+

− 〈w〉
I−

〈w〉
I

)2

.
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1.2 Buckley Inequality 9

Using the fact that B does not depend on the interval where the test functions

are defined, we can choose two weights w± on the intervals I± that almost

give us the supremum in the definition of B(x±), i.e.,

1

|I±|

∑

J∈D(I±)

|J |

(

〈w±〉
J+ − 〈w±〉

J−

〈w±〉
J

)2

≥ B(x±)− η,

for an arbitrary fixed small η > 0. Then for the weight w on I , defined as w+

on I+ and w− on I−, we obtain the inequality

1

|I|

∑

J∈D(I)

|J |

(

〈w〉
J+ − 〈w〉

J−

〈w〉
J

)2

≥
B(x+) +B(x−)

2
− η +

(

x+
1 − x−

1

x1

)2

.

(1.2.4)

Observe that the compound weight w is an admissible weight, corresponding

to the point x. Indeed, x± = bI±(w) and by the construction of w± we have

w± ∈ Ad
∞(I±, r). Therefore, the weight w satisfies the inequality 〈w〉

J
≤

re〈logw〉
J for all J ∈ D(I+), since w+ does, and for all J ∈ D(I−), since w−

does. Lastly, 〈w〉
I
≤ re〈logw〉

I , because, by assumption, x ∈ Ωr.

We can now take supremum in (1.2.4) over all admissible weights w, which

yields

B(x) ≥
B(x+) +B(x−)

2
− η +

(x+
1 − x−

1

x1

)2

.

This proves the main inequality because η is arbitrarily small.

Lemma 1.2.2 (Boundary Condition)

B(x1, log x1) = 0.

Proof Let us take a boundary point x of our domain Ωr, that is a point with

x2 = log x1. Since the equality in Jensen’s inequality e〈w〉 ≤ 〈ew〉 occurs

only for constant functions w, the only test function corresponding to x is the

constant (up to a set of measure zero) weight w = x1. So, on this boundary,

we have B(x) = 0.

Lemma 1.2.3 (Homogeneity) There is a function g on [1, r] satisfying g(1) = 0

and such that

B(x) = B(x1e
−x2 , 0) = g(x1e

−x2).

Proof For a weight w on an interval I and a positive number τ , consider a

new weight w̃ = τw. If x = bI(w), i.e., x1 = 〈w〉
I
, x2 = 〈logw〉

I
, then

for the point bI(w̃) = x̃ we have x̃1 = τx1, x̃2 = x2 + log τ . Note that the
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10 1 Examples of Exact Bellman Functions

expression in the definition of B is homogeneous of order 0 with respect to w,

i.e., it does not depend on τ . Since the weights w and w̃ run over the whole

set Ad
∞(I, r) simultaneously, we get B(x) = B(x̃). Choosing τ = e−x2 , we

obtain

B(x) = B(x1e
−x2 , 0).

To complete the proof, it suffices to take g(s) = B(s, 0). The boundary

condition g(1) = 0 holds due to Lemma 1.2.2.

We are now ready to demonstrate how the Bellman induction works in

this case.

Lemma 1.2.4 (Bellman Induction) Let B be a nonnegative function on Ωr

satisfying the main inequality in Ωr (Lemma 1.2.1). Then

B(x) ≤ B(x).

Proof Fix an interval I and a point x ∈ Ωr. Take an arbitrary weight w ∈

Ad
∞(I, r) such that bI(w) = x. Let us repeatedly use the main inequality in

the form

|J |B(bJ ) ≥ |J+|B(bJ+) + |J−|B(bJ−) + |J |

(

〈w〉
J+ − 〈w〉

J−

〈w〉
J

)2

,

applying it first to I , then to the intervals of the first generation (that is I±),

and so on until Dn(I):

|I|B(bI) ≥ |I+|B(bI+) + |I−|B(bI−) + |I|

(

〈w〉
I+

− 〈w〉
I−

〈w〉
I

)2

≥
∑

J∈Dn(I)

|J |B(bJ ) +

n−1
∑

k=0

∑

J∈Dk(I)

|J |

(

〈w〉
J+ − 〈w〉

J−

〈w〉
J

)2

.

Therefore,

n−1
∑

k=0

∑

J∈Dk(I)

|J |

(

〈w〉
J+ − 〈w〉

J−

〈w〉
J

)2

≤ |I|B(bI),

and passing to the limit as n → ∞, we get

∑

J∈D(I)

|J |

(

〈w〉
J+ − 〈w〉

J−

〈w〉
J

)2

≤ |I|B(x).

Taking supremum over all admissible weight w corresponding to the point x,

we come to the desired estimate.
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