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Decision-making in the face of uncertainty is a significant challenge in machine learning,

and the multi-armed bandit model is a commonly used framework to address it. This com-

prehensive and rigorous introduction to the multi-armed bandit problem examines all the

major settings, including stochastic, adversarial and Bayesian frameworks. A focus on both

mathematical intuition and carefully worked proofs makes this an excellent reference for

established researchers and a helpful resource for graduate students in computer science,

engineering, statistics, applied mathematics and economics. Linear bandits receive special

attention as one of themost usefulmodels in applications, while other chapters are dedicated

to combinatorial bandits, ranking, non-stationary problems, Thompson sampling and pure

exploration. The book ends with a peek into the world beyond bandits with an introduction

to partial monitoring and learning in Markov decision processes.
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csaba szepesvári is a professor at the Department of Computing Science of the Uni-
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tion to publishing over 200 journal and conference papers. He is an action editor of the
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Preface

Multi-armed bandits have now been studied for nearly a century. While research in the

beginning was quite meandering, there is now a large community publishing hundreds of

articles every year. Bandit algorithms are also finding their way into practical applications

in industry, especially in on-line platforms where data is readily available and automation

is the only way to scale.

We had hoped to write a comprehensive book, but the literature is now so vast that many

topics have been excluded. In the end we settled on the more modest goal of equipping our

readers with enough expertise to explore the specialised literature by themselves, and to

adapt existing algorithms to their applications. This latter point is important. Problems in

theory are all alike; every application is different. A practitioner seeking to apply a bandit

algorithm needs to understand which assumptions in the theory are important and how to

modify the algorithm when the assumptions change. We hope this book can provide that

understanding.

What is covered in the book is covered in some depth. The focus is on the mathematical

analysis of algorithms for bandit problems, but this is not a traditional mathematics book,

where lemmas are followed by proofs, theorems and more lemmas. We worked hard to

include guiding principles for designing algorithms and intuition for their analysis. Many

algorithms are accompanied by empirical demonstrations that further aid intuition.

We expect our readers to be familiar with basic analysis and calculus and some linear

algebra. The book uses the notation of measure-theoretic probability theory, but does not

rely on any deep results. A dedicated chapter is included to introduce the notation and

provide intuitions for the basic results we need. This chapter is unusual for an introduction

to measure theory in that it emphasises the reasons to use σ-algebras beyond the standard

technical justifications. We hope this will convince the reader that measure theory is an

important and intuitive tool. Some chapters use techniques from information theory and

convex analysis, and we devote a short chapter to each.

Most chapters are short and should be readable in an afternoon or presented in a single

lecture. Some components of the book contain content that is not really about bandits. These

can be skipped by knowledgeable readers, or otherwise referred to when necessary. They

aremarkedwith a ( ) because ‘Skippy the Kangaroo’ skips things.
1

The samemark is used

for those parts that contain useful, but perhaps overly specific information for the first-time

reader. Later parts will not build on these chapters in any substantial way. Most chapters

end with a list of notes and exercises. These are intended to deepen intuition and highlight

1

Taking inspiration from Tor’s grandfather-in-law, John Dillon [Anderson et al., 1977].
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Preface xiv

the connections between various subsections and the literature. There is a table of notation

at the end of this preface.

Thanks

We’re indebted to our many collaborators and feel privileged that there are too many of

you to name. The University of Alberta, Indiana University and DeepMind have all pro-

vided outstanding work environments and supported the completion of this book. The book

has benefited enormously from the proofreading efforts of a large number of our friends

and colleagues. We’re sorry for all the mistakes introduced after your hard work. Alpha-

betically, they are: Aaditya Ramdas, Abbas Mehrabian, Aditya Gopalan, Ambuj Tewari,

András György, Arnoud den Boer, Branislav Kveton, Brendan Patch, Chao Tao, Christoph

Dann, Claire Vernade, Emilie Kaufmann, Eugene Ji, Gellért Weisz, Gergely Neu, Johannes

Kirschner, Julian Zimmert, Kwang-Sung Jun, Lalit Jain, Laurent Orseau, Marcus Hutter,

Michal Valko, Omar Rivasplata, Pierre Menard, Ramana Kumar, Roman Pogodin, Ronald

Ortner, Ronan Fruit, Ruihao Zhu, Shuai Li, Toshiyuki Tanaka, Wei Chen, Yoan Russac,

Yufei Yi and Zhu Xiaohu. We are especially grateful to Gábor Balázs and Wouter Koolen,

who both read almost the entire book. Thanks to Lauren Cowles and Cambridge University

Press for providing free books for our proofreaders, tolerating the delays and for supporting

a freely available PDF version. Réka Szepesvári is responsible for converting some of our

school figures to their current glory. Last of all, our families have endured endless weekends

of editing and multiple false promises of ‘done by Christmas’. Rosina and Beáta, it really

is done now!
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Notation

Some sections are marked with special symbols, which are listed and described below.

This symbol is a note. Usually this is a remark that is slightly tangential to the topic

at hand.

A warning to the reader.

Something important.

An experiment.

Nomenclature and Conventions

A sequence (an)
∞
n=1 is increasing if an+1 ≥ an for alln ≥ 1 and decreasing if an+1 ≤ an.

When the inequalities are strict, we say strictly increasing/decreasing. The same terminol-

ogy holds for functions.Wewill not be dogmatic about what is the range of argmin/argmax.

Sometimes they return sets, sometimes arbitrary elements of those sets and, where stated,

specific elements of those sets. We will be specific when it is non-obvious/matters. The

infimum of the empty set is inf ∅ = ∞ and the supremum is sup ∅ = −∞. The empty sum

is
∑

i∈∅ ai = 0 and the empty product is
∏

i∈∅ ai = 1.

Landau Notation

We make frequent use of the Bachmann–Landau notation. Both were nineteenth century

mathematicians who could have never expected their notation to be adopted so enthusiasti-

cally by computer scientists. Given functions f , g : N → [0,∞), define

f(n) = O(g(n)) ⇔ lim sup
n→∞

f(n)

g(n)
< ∞,

f(n) = o(g(n)) ⇔ lim
n→∞

f(n)

g(n)
= 0,

www.cambridge.org/9781108486828
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Notation xvi

f(n) = Ω(g(n)) ⇔ lim inf
n→∞

f(n)

g(n)
> 0,

f(n) = ω(g(n)) ⇔ lim inf
n→∞

f(n)

g(n)
= ∞,

f(n) = Θ(g(n)) ⇔ f(n) = O(g(n)) and f(n) = Ω(g(n)).

We make use of the (Bachmann–)Landau notation in two contexts. First, in proofs where

limiting arguments are made, we sometimes write lower-order terms using Landau nota-

tion. For example, we might write that f(n) =
√
n + o(

√
n), by which we mean that

limn→∞ f(n)/
√
n = 1. In this case we use the mathematical definitions as envisaged by

Bachmann and Landau. The second usage is to informally describe a result without the

clutter of uninteresting constants. For better or worse, this usage is often a little imprecise.

For example, we will often write expressions of the form:Rn = O(m
√
dn). Almost always

what is meant by this is that there exists a universal constant c > 0 (a constant that does

not depend on either of the quantities involved) such thatRn ≤ cm
√
dn for all (reasonable)

choices ofm, d and n. In this context we are careful not to use Landau notation to hide large

lower-order terms. For example, if f(x) = x2 + 10100x, we will not write f(x) = O(x2),

although this would be true.

Bandits

At action in round t

k number of arms/actions

n time horizon

Xt reward in round t

Yt loss in round t

π a policy

ν a bandit

µi mean reward of arm i

Sets

∅ empty set

N, N+ natural numbers, N = {0, 1, 2, . . .} and N
+ = N \ {0}

R real numbers

R̄ R ∪ {−∞,∞}
[n] {1, 2, 3, . . . ,n− 1,n}
2A the power set of set A (the set of all subsets of A)

A∗ set of finite sequences over A, A∗ =
⋃∞

i=0
Ai

Bd
2 d-dimensional unit ball, {x ∈ R

d : ‖x‖2 ≤ 1}
Pd probability simplex, {x ∈ [0, 1]d+1 : ‖x‖1 = 1}
P(A) set of distributions over set A

B(A) Borel σ-algebra on A

[x, y] convex hull of vectors or real values x and y

Functions, Operators and Operations

|A| the cardinality (number of elements) of the finite set A

(x)+ max(x, 0)
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Notation xvii

amod b remainder when natural number a is divided by b

⌊x⌋, ⌈x⌉ floor and ceiling functions of x

dom(f) domain of function f

E expectation

V variance

Supp support of distribution or random variable

∇f(x) gradient of f at x

∇vf(x) directional derivative of f at x in direction v

∇2f(x) Hessian of f at x

∨,∧ maximum and minimum, a ∨ b = max(a, b) and a ∧ b = min(a, b)

erf(x) 2√
π

∫ x

0
exp(−y2)dy

erfc(x) 1− erf(x)

Γ(z) Gamma function, Γ(z) =
∫∞
0

xz−1 exp(−x)dx

φA(x) support function φA(x) = supy∈A〈x, y〉
f∗(y) convex conjugate, f∗(y) = supx∈A〈x, y〉 − f(x)
(

n
k

)

binomial coefficient

argmaxx f(x) maximiser or maximisers of f

argminx f(x) minimiser or minimisers of f

Iφ indicator function: converts Boolean φ into binary

IB indicator of set B

D(P ,Q) Relative entropy between probability distributions P and Q

d(p, q) Relative entropy between B(p) and B(q)

Linear Algebra

e1, . . . , ed standard basis vectors of the d-dimensional Euclidean space

0,1 vectors whose elements are all zeros and all ones, respectively

det(A) determinant of matrix A

trace(A) trace of matrix A

im(A) image of matrix A

ker(A) kernel of matrix A

span(v1, . . . , vd) span of vectors v1, . . . , vd
λmin(G) minimum eigenvalue of matrix G

〈x, y〉 inner product, 〈x, y〉 = ∑

i xiyi
‖x‖p p-norm of vector x

‖x‖2G x⊤Gx for positive definite G ∈ R
d×d and x ∈ R

d

≺,� Loewner partial order of positive semidefinite matrices: A � B

(A ≺ B) if B −A is positive semidefinite (respectively, definite).

Distributions

N (µ, σ2) Normal distribution with mean µ and variance σ2

B(p) Bernoulli distribution with mean p

U(a, b) uniform distribution supported on [a, b]

Beta(α, β) Beta distribution with parameters α, β > 0

δx Dirac distribution with point mass at x
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Notation xviii

Topological

cl(A) closure of set A

int(A) interior of set A

∂A boundary of a set A, ∂A = cl(A) \ int(A)
co(A) convex hull of A

aff(A) affine hull of A

ri(A) relative interior of A
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