Practical Techniques in Molecular Biotechnology

A well-designed research-based experimental laboratory course is critical for students interested in research in biotechnology and related disciplines, and this book will help immensely in developing these kinds of courses. At the graduate level, this book is a good reference for instructors interested in developing innovative theoretical and practical courses related to biochemistry/biophysical chemistry/biotechnology fields and also for designing research-based courses for the molecular biology lab, or for instruction in cellular biology, nanotechnology, and neurobiology.

Practical Techniques in Molecular Biotechnology engages students in the learning of laboratory and practical research skills by focusing on the solution of some real-world scientific problems. This approach helps students learn biochemical techniques in a context, and allows better integration with research projects. The text intends to familiarize students with the basics of experimental biotechnology science for their use and application in research. While providing the fundamentals of biochemistry, it focuses primarily on concepts and practices related to biotechnology. Theoretical principles underlying experimental techniques, procedures, assignments, and data analysis are presented with adequate examples. The book is designed in such a way that it exposes students to the practice of general biochemical and biophysical techniques, which lay the groundwork for future courses and research projects in biotechnology and its related fields. In addition, the book contains information on data analysis, statistics, units, safety, and best practices.

Bal Ram Singh is Director, Institute of Advanced Science, Dartmouth, USA. He has served on the Blue-Ribbon Panels for National Institutes of Health (NIH) on Biodefense Research, and has also worked in several NIH study section reviewer panels. He is a member of American Chemical Society, American Society for Microbiology, American Association for the Advancement of Science, and American Society for Biochemistry and Molecular Biology. He has published more than 180 papers in peer-reviewed journals.

Raj Kumar is an Assistant Professor at the Institute of Advanced Science, Dartmouth, USA. Kumar has served in a study section of the NIH reviewer panel. Other than scientific articles in peer-reviewed journals he has contributed several chapters to books on biochemistry and biophysics. He is the author of the book *Protein Toxins in Modeling Biochemistry*. His areas of research include nanoparticles, biotechnology, drug delivery, cellular biology, MD simulation, protein biochemistry, and drug screening.

Practical Techniques in **Molecular Biotechnology**

Bal Ram Singh Raj Kumar

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi-110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781108486408

© Bal Ram Singh and Raj Kumar 2021

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2021

Printed in India

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data

Names: Singh, Bal Ram, author. | Kumar, Raj (Biochemist), author. Title: Practical techniques in molecular biotechnology / Bal Ram Singh, Raj Kumar.

Description: Cambridge, United Kingdom; New York, NY: Cambridge University Press, 2021. | Includes bibliographical references and index.

Identifiers: LCCN 2021013816 (print) | LCCN 2021013817 (ebook) | ISBN 9781108486408 (hardback) | ISBN 9781108659161 (ebook)

Subjects: MESH: Molecular Biology--methods | Biotechnology--methods | Chemistry Techniques, Analytical--methods | Tissue Engineering--methods | BISAC: MEDICAL / Biotechnology | MEDICAL / Biotechnology

Classification: LCC QP801.B69 (print) | LCC QP801.B69 (ebook) | NLM QU 34 | DDC 572/.33--dc23

LC record available at https://lccn.loc.gov/2021013816

LC ebook record available at https://lccn.loc.gov/2021013817

ISBN 978-1-108-48640-8 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

List of Figures List of Tables Preface					
1.	Intro	oduction	ı	1	
	1.1	Biotech	nnology – Its Background and History	1	
	1.2	Techno	ology and Laboratory Practice	8	
	1.3	Pedago	gical Strategy of Biochemical Technology Practice	10	
	1.4	Labora	tory Safety	14	
	1.5	Biosafe	ety and Biosafety Levels	15	
2.	Reco	20			
	2.1	Introdu	uction	20	
	2.2	2 Cloning		21	
	2.3	Types of	21		
		2.3.1	Plasmid Vectors	21	
		2.3.2	Bacteriophages or Phage Lambda	23	
		2.3.3	Cosmids	24	
		2.3.4	Yeast Artificial Chromosomes (YACs)	25	
	2.4	Express	sion Systems	27	
		2.4.1	Bacterial Expression Systems	28	
		2.4.2	Yeast Expression Systems	29	
		2.4.3	Baculovirus Expression Systems	29	
		2.4.4	Mammalian Expression Systems	29	
		2.4.5	Cell Free Expression Systems	30	
	2.5	Promot	ters	31	
		2.5.1	The Lac Promoter	32	
		2.5.2	The tac and trc Promoters	32	
		2.5.3	The ara Promoter	33	

VI				Contents
		2.5.4	The T7 Promoter	34
		2.5.5	The Lambda Promoters	35
		2.5.6	Cold-shock Promoters	35
		2.5.7	Non-promoter Regulatory Elements	35
	2.6	Protei	n Purification Methods	36
		2.6.1	Cell Disruption	38
		2.6.2	Purification Methods	39
		2.6.3	Affinity Purification	40
		2.6.4	Gel Filtration or Size Exclusion	42
		2.6.5	Salting In/Salting Out	42
		2.6.6	Analytical Centrifugation	44
	2.7	Monit	toring Protein Purification	45
		2.7.1	Determination of Protein Concentration	45
		2.7.2	Ultraviolet Absorption	46
		2.7.3	Bradford Method	46
		2.7.4	Lowry (Folin–Ciocaltaeu) Method	46
		2.7.5	The Bicinchoninic Acid (BCA) Method	46
		2.7.6	Kjeldahl Method	47
3.	Enz	yme Kii	netics, Proteomics, and Mass Spectrometry	51
	3.1	Order	and Molecularity	52
	3.2	Impor	tant Theories Related to Enzyme Kinetics	52
		3.2.1	Collision Theory	52
		3.2.2	Transition State Theory	54
		3.2.3	Arrhenius Equation	56
	3.3	Enzyn	nes	57
		3.3.1	Catalytic Mechanism	58
		3.3.2	Enzyme Unit	58
		3.3.3	Transition States and Reaction Rates	59
		3.3.4	Initial Velocity	60
	3.4	Enzyn	ne Kinetics	61
		3.4.1	Order of Reaction	61
		3.4.2	Michaelis–Menten Analysis	62
		3.4.3	The Significance of K_m , k_{cat} and k_{cat}/K_m	63
	3.5	Graph	as of the Michaelis–Menten Equation	64
		3.5.1	Plotting v Against [s]	64
		3.5.2	The Double-reciprocal Plot	64
		3.5.3	The Plot of [S]/v Against [S]	65
		3.5.4	The Plot of v Against v/a	65
		3.5.5	The Direct Linear Plot	66

Cambridge University Press 978-1-108-48640-8 — Practical Techniques in Molecular Biotechnology Bal Ram Singh , Raj Kumar Frontmatter <u>More Information</u>

Contents

	3.6	Enzym	e Inhibition	67
		3.6.1	Competitive Inhibition	68
		3.6.2	Noncompetitive Inhibition	68
		3.6.3	Uncompetitive Inhibition	69
		3.6.4	Mixed Inhibition	70
		3.6.5	Irreversible Inhibition	72
	3.7	Inhibit	ory Effect of Substrates	72
		3.7.1	Non-productive Binding	72
		3.7.2	Substrate Inhibition	73
	3.8	Genera	l Protocol for an Inhibition Experiment	74
	3.9	Applica	ations of Enzyme Inhibition	75
	3.10	Method	dologies for Studying Catalytic Mechanism of the Enzyme	75
	3.11	Enzym	e Activation	76
		3.11.1	Specific Activation	76
		3.11.2	Hyperbolic Activation and Inhibition	77
	3.12	Proteor	nics	78
		3.12.1	2-D PAGE	79
		3.12.2	Mass-fingerprinting	82
	3.13	Mass S	pectrometry	84
		3.13.1	Introduction	84
			3.13.1.1 Principles	85
			3.13.1.2 Vacuum System	86
			3.13.1.3 Sample System	86
			3.13.1.4 Ion Source (ionization)	87
			3.13.1.5 Mass Analyzer	92
			3.13.1.6 Applications	92
			3.13.1.7 Identification and Sequence Determination of Peptides and Proteins	94
4.	Bioa	nalvtica	1 Techniques	103
	4.1	Introdu	iction	103
		4.1.1	Requirements for Structure and Function of Biomolecules and	
			Affecting Factors	104
	4.2	Hydroc	lynamic Methods	105
		4.2.1	Sedimentation	106
		4.2.2	Use of Sedimentation or Centrifugation Techniques	107
	4.3	Biocalo	rimetry	108
	4.4	Spectro	oscopic Techniques Used on Biomolecules	112
		4.4.1	Basis and Purpose	112
		4.4.2	Sigma (s) and Pi (p) Orbitals and Bonds	112
		4.4.3	Benzene and Aromatic Molecular Stabilities	115
		4.4.4	Molecular Structure and Transitions	116

vii

viii				Contents
		4.4.4.1	Conjugated p Electron System	116
		4.4.4.2	Molecular Features and Electronic Transitions	117
		4.4.4.3	Structure and Optical Properties of Biological Chromophores	122
	4.4.5	Ultravio	let/Visible Absorption Spectroscopy	125
	4.4.6	Fluoresc	ence Spectroscopy	136
	4.4.7	Use of F	luorescence	141
4.5	Circula	ar Dichrois	sm (CD)	145
	4.5.1	Spectral	Characteristics	146
4.6	FTIR	Spectrosco	ру	151
	4.6.1	Analysis	of Protein FTIR Data	153
4.7	Electro	phoretic T	Techniques	154
	4.7.1	Theory of	of Electrophoresis	154
	4.7.2	Polyacry	lamide Gel	157
	4.7.3	Agarose	Gels	157
	4.7.4	Sodium (SDS-PA	Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis AGE)	158
		4.7.4.1	Ion Mobility and Protein Stacking	160
		4.7.4.2	What Happens Once the Proteins Have Been Stacked?	160
		4.7.4.3	Buffer Systems Used in Gel Electrophoresis	161
			4.7.4.3.1 Continuous Buffer Systems	161
			4.7.4.3.2 Discontinuous Buffer Systems	161
		4.7.4.4	Safety	162
	4.7.5	Isoelectr	ic Focusing (IEF) Gel Electrophoresis	162
		4.7.5.1	Principles of Isoelectric Focusing	163
		4.7.5.2	The Process of Isoelectric Focusing and the Estimation of pI	164
		4.7.5.3	Establishing a pH Gradient	164
	4.7.6	Two-din	nensional Gel Electrophoresis	165
		4.7.6.1	Sample Preparation	166
		4.7.6.2	Protocol for SDS-PAGE	166
	4.7.7	Capillar	y Electrophoresis	166
5. Mol	ecular B	iology		169
5.1	Introdu	uction		169
5.2	Structu	are of Nuc	leic Acids	170
	5.2.1	The Nat	ure and Components of Nucleic Acids	170
	5.2.2	Primary	Structure of Nucleic Acids	173
	5.2.3	Seconda	ry and Tertiary Structures of Nucleic Acids	174
		5.2.3.1	A Model for DNA Structure: The Double Helix	174
		5.2.3.2	Structures of Single-Stranded Nucleic Acids (RNA)	178
		5.2.3.3	Super Coiled Tertiary Structures of Closed DNA	178

Content	S		ix
	5.2.4	Stability of Secondary and Tertiary Structures of Nucleic Acids	179
	5.2.5	Physical Organization of DNA within the Nucleus	180
5.3	Functi	ons of Nucleic Acids	181
	5.3.1	Replication: DNA to DNA	182
	5.3.2	Transcription: DNA to RNA	183
	5.3.3	Translation: RNA to Protein	185
5.4	Genes	and Genome	187
	5.4.1	Introduction	187
	5.4.2	Genome Complexity	188
5.5	Isolati	on and Separation of Nucleic Acids	190
	5.5.1	Conventional Chemical Nucleic Acid Extraction Methods	191
	5.5.2	Solid Phase Nucleic Acid Extraction using Silica-based Technology	192
	5.5.3	Magnetic Beads-based Nucleic Acid Isolation	192
	5.5.4	Anion Exchange Technology	193
	5.5.5	Automated Extraction Systems	193
	5.5.6	Electrophoresis for Separation of Nucleic Acids	193
5.6	Manip	oulation and Detection of Nucleic Acids	195
	5.6.1	Enzymes Used to Manipulate Nucleic Acids in Molecular Biology	195
		5.6.1.1 Nucleases	195
		5.6.1.2 Ligases	197
		5.6.1.3 Polymerases	197
		5.6.1.4 DNA Modifying Enzymes	197
	5.6.2	Nucleic Acid Mutagenesis	198
		5.6.2.1 Oligonucleotide-directed Mutagenesis	199
		5.6.2.2 PCR-based Site-directed Mutagenesis	199
		5.6.2.3 CRISPR/Cas-9 Technology	201
	5.6.3	Nucleic Acid Hybridization	202
		5.6.3.1 Blotting	204
		5.6.3.2 Colony Hybridization	205
		5.6.3.3 Fluorescence in situ Hybridization	206
5.7	Polym	erase Chain Reaction	207
	5.7.1	Introduction	207
	5.7.2	Steps in PCR	208
	5.7.3	Variations of PCR	210
		5.7.3.1 Nested PCR	210
		5.7.3.2 Quantitative PCR (qPCR)	210
		5.7.3.3 Reverse Transcription PCR (RT-PCR)	214
		5.7.3.4 Inverse PCR	214
		5.7.3.5 Multiplex PCR	215

х					Contents
			5.7.3.6	Touchdown PCR	216
			5.7.3.7	Asymmetric PCR	216
	5.8	Nuclei	c Acid Se	quencing	216
		5.8.1	First Ge	eneration Sequencing	217
			5.8.1.1	Chain Termination/Sanger Sequencing Method	217
			5.8.1.2	Maxim and Gilbert Sequencing	217
			5.8.1.3	Automated Fluorescent DNA Sequencing	218
		5.8.2	Next G	eneration (Second Generation) Sequencing	218
			5.8.2.1	Pyrosequencing	219
			5.8.2.2	Illumina	220
			5.8.2.3	Ion Torrent Sequencing	221
			5.8.2.4	Solid	222
		5.8.3	Third C	Generation Sequencing	223
			5.8.3.1	SMRT	224
			5.8.3.2	Oxford Nanopore	224
	5.9	Analyz	ing Gene	e and Gene Expression	226
		5.9.1	Method	ls for the Study of Gene Expression	227
			5.9.1.1	Low-Throughput Methods	227
			5.9.1.2	High-Throughput Methods	233
	5.10	Protoco	ols		236
		5.10.1	Agarose	e Gel Electrophoresis	236
		5.10.2	Extracti	ion of RNA Using the PureLink® RNA Mini Kit	237
		5.10.3	Polymer	rase Chain Reaction (PCR)	238
6.	Cell	Culture	;		241
	6.1	Introdu	uction		241
	6.2	Cell St	242		
	6.3	Cell C	ycle		246
		6.3.1	Mitosis		248
	6.4	Cell M	licroenvir	251	
	6.5	Primar	y Explant	tation versus Disaggregation	252
	6.6	Prolife	ration ver	sus Differentiation	255
		6.6.1	Prolifer	ation	255
		6.6.2	Differer	ntiation	256
	6.7	Organo	otypic Cu	lture	257
	6.8	Basics	of Cell C	ulturing and Associated Measurements	258
		6.8.1	Types of	f Cell Culture	260
			6.8.1.1	Primary Cell Cultures	260
			6.8.1.2	Secondary Cell Culture	261
			6.8.1.3	Cell Line	261

Contents	6		xi
		6.8.1.4 Stem Cell Cultures	261
		6.8.1.5 Subcultures	262
		6.8.1.6 Growth Cycle	264
		6.8.1.7 Serial Subculture	265
6.9	Propag	ation, Population Doubling and Passage Number	265
6.10	Cell Vi	iability	265
	6.10.1	Common Assays for Cell Viability	265
6.11	Cryopr	reservation	266
6.12	Charac	cterization and Validation	267
	6.12.1	Characterization	267
	6.12.2	Cross Contamination	267
	6.12.3	Microbial Contamination	268
6.13	Micros	сору	268
	6.13.1	The Light Microscope	269
	6.13.2	Fluorescence Microscopy	270
	6.13.3	Confocal Microscopy	271
	6.13.4	Electron Microscope	272
	6.13.5	Atomic Force Microscopy	274
. Anti	body Te	chnology	282
7.1	Introdu	uction to Immunochemical Techniques	282
7.2	Antibo	odies	283
7.3	Epitop	e Mapping	286
7.4	Immur	noassay	287
	7.4.1	Heterogenous Immunoassays Can Be Competitive or Noncompetitive	288
7.5	ELISA		288
	7.5.1	Direct ELISA	289
	7.5.2	Indirect ELISA	290
	7.5.3	Sandwich ELISA	291
	7.5.4	Competitive/Inhibition ELISA	292
7.6	Immur	nofluorescence	294
7.7	Immur	noblotting	296
7.8	Immur	noprecipitation Reaction	297
	7.8.1	How does IP work?	297
	7.8.2	Types of Immunoprecipitation (IP)	298
7.9	Immur	nodiffusion	302
	7.9.1	Radial Immunodiffusion (RID)	302
	7.9.2	Ouchterlony Double Immunodiffusion (ODI)	303
7.10	Radioi	mmunoassay (RIA)	304
7.11	Immur	noelectrophoresis	306

xii			Contents
7.12	Immur	nosensors	308
	7.12.1	Surface Plasmon Resonance (SPR)	309
7.13	Immur	notherapy	309
	7.13.1	General Principles of mAb Activity	312
	7.13.2	Targets of Therapeutic Antibodies	313
	7.13.3	Modifications	314
Appendic	es		318
Appo	endix 1	Troubleshooting: Cell Culture	318
Appe	endix 2	Laboratory Safety	322
Appe	endix 3	Statistics	324
Appo	endix 4	Significant Figures	330
Appe	endix 5	Units in the Biochemistry Laboratory	332
Appe	endix 6	Chapter Contributors	334
Appo	endix 7	Online Resources	334
Index			337
Color Pla	ites		341

Figures

1.1	Biosafety levels.	16 16
1.2	DSL-1. RSL 2	10
1.5	BSL 2	17
1.4	BSL 4.	18
21	Plasmid in bacterial cells (A) and general organization of a plasmid vector (B)	22
2.2	Plasmid vectors with multiple cloning sites (A). One of the common plasmid vectors	22
	used for cloning (B).	22
2.3	(A) Structure of Lambda bacteriophage. (B) DNA organization in bacteriophage head.	
	(C) At the cos site, at both ends, DNA is circularized and the phase starts replicating.	23
2.4	Organization of cosmids.	25
2.5	(A) Basic YACs organization. (B) A circular YAC. (C) From source DNA, DNA	
	fragments with compatible ends are designed and prepared.	26
2.6	Organization of expression vector.	27
2.7	Various combinations of protein genes commonly inserted into an expression vector.	28
2.8	Steps in mammalian expression system for exogeneous protein production.	30
2.9	A simple promoter.	31
2.10	(A) Lac promoter system. (B) When there is no lactose, the lac repressor binds to the	
	operator, so no mRNA transcription. (C) With both glucose and lactose present, σ -factor	
	binds to the promoter region resulting in low mRNA transcription. (D) In presence	
	of lactose (no glucose) both catabolite gene activator protein and σ -factor bind to the	
	promoter and CAP binding site resulting in high mRNA transcription.	33
2.11	Model representing the arabinose operon regulation mechanism.	34
2.12	Basic protein purification steps.	37
2.13	Ion-exchange chromatography.	40
2.14	Molecular weight range for different gel filtration media.	43
2.15	Depicting "salting in" and "salting out" processes.	43
2.16	Solubility of a protein in different salts solution.	44
3.1	A simple rate equation.	52
3.2	Reaction coordinate diagram for the bimolecular reaction.	54
3.3	Depiction of energies of enzyme catalyzed and non-enzyme catalyzed reactions.	59

xiv		Figures
3.4	Changes in enzyme, substrate, enzyme–substrate complex or product concentration.	60
3.5	Concentration dependent variation of substrate on the reaction order of an enzyme	
	catalyzed reaction.	61
3.6	The general enzyme–substrate reaction graph between the reaction velocity with respect	(2)
	to the substrate concentration.	63
3.7	Lineweaver–Burk plot.	64
3.8	Hanes–Woalf plot.	65
3.9	Eadie-Hofstee plot.	66
3.10	Direct linear plot of V against Km.	67
3.11	Different modes of enzyme inhibition.	71
3.12	Typical Lineweaver–Burk (L–B) plots of different inhibition modes.	72
3.13	Example of substrate inhibition.	73
3.14	Fields where proteomics can be used.	79
3.15	Schematic representation of classical 2-D gel electrophoresis.	80
3.16	Schematics of two approaches for mass spectrometric based proteomic analysis: peptide	
	mass mapping (or PMF) and peptide sequencing.	83
3.17	A schematic diagram of fragmentation creating two fragments: N-terminal b-ions and	
	C-terminal y-ions.	83
3.18	Basic components of mass spectrometers.	85
3.19	Mass spectrum of methanol. CH ₃ OH ⁺ is the molecular ion and CH ₃ O ⁺ and CH ₃ ⁺ are	
	other fragments.	85
3.20	Electron impact ionization interface.	88
3.21	The interface of APCI.	90
3.22	Process of application of LC-MS/MS in proteomics.	93
3.23	Fragmentation of peptide: a, b, c, x, y, and $z - ions$.	94
3.24	Fragmentation into d, v, and w – ions.	95
3.25	Fragments derived from double cleavage of peptide main chain.	95
3.26	b – ions of somatostatin.	96
3.27	Formation of b – ions.	97
3.28	v – ions of somatostatin.	97
3.29	Formation of y – ions of somatostatin.	98
4.1	Ostwald viscometer.	105
4.2	Subcellular fractionation.	107
4.3	Isothermal calorimetry.	110
4.4	Typical DSC thermogram.	110
4.5	DSC heating curves for the thermal denaturation of GLUT-1.	111
4.6	Arrhenius plot.	111
4.7	Schematics of <i>s bonding</i> and antibonding molecular orbital formation from a pair of 1s	
	orbitals (A and B).	112
4.8	Schematics of s bonding and antibonding molecular orbital formation from a pair of s	
	and \boldsymbol{p} orbitals or a pair of \boldsymbol{p} orbitals (A and B).	113
4.9	Schematics of π <i>bonding</i> and antibonding molecular orbital formation from a pair of p	
,	orbitals (A and B).	113
4.10	Schematics of s and p bonding and antibonding molecular orbital formation from a pair	110
	of s and s orbitals, or a pair of p orbitals (A and B).	114
4 11	Hybrid orbitals.	114

Cambridge University Press 978-1-108-48640-8 — Practical Techniques in Molecular Biotechnology Bal Ram Singh , Raj Kumar Frontmatter <u>More Information</u>

Figures

4.12	sp^3 hybrid orbitals on C atom form an s bond each with 4 H 1 s orbital in methane (CH ₄).	114
4.13	Double and triple bonds involving s and p bonds.	115
4.14	Depiction of <i>s</i> , <i>p</i> , and <i>n</i> orbitals in a carboxy (>C = O) group.	115
4.15	The p molecular orbitals of benzene.	116
4.16	Electronic absorption spectra of β -carotene (A) in linear all trans and 15,15-cis structure	
	forms (B).	118
4.17	Pr (red light absorbing) and Pfr (far-red light absorbing) forms of phytochrome (A)	
	showing spectral shift (B) showing in part the trans and cis forms of the tetrapyrrolic	
	chromophore (C).	118
4.18	Absorption spectra of hemoglobin (A), hematin (B), bilirubin (C), and biliverdin (D),	
	along with the chromophore structures.	119
4.19	Structure of benzene and its electronic energy states showing transitions between	
	HOMO and LUMO orbitals.	120
4.20	Structure of chlorophyll, a porphyrin and its electronic energy states showing transitions	
	between HOMO and LUMO orbitals.	120
4.21	Ground and excited states of naphthalene, showing excited state degeneracy and B and	
	L transitions corresponding to two different angular momentum quantum number	
	changes (Dq as +1 and +5).	121
4.22	Transition dipole orientation and electron density distribution for naphthalene n=2 and	
	Δq as +1 and +5). +1 or the B-states and 5 for the L-states.	121
4.23	Structure and absorption spectra of benzene, naphthalene, and anthracene, showing	
	transitions corresponding to degenerate energy states.	122
4.24	Absorption bands of Chlorophyll a, Chlorophyll b, and Carotenoids, showing transition	
	bands.	122
4.25	UV-Vis absorption spectra of phytochrome in its Pr and Pfr forms.	123
4.26	Tetrapyrrolic chromophore structure and conformation in the Pr and Pfr forms of	
	chromophore.	123
4.27	A model for photo-transformation of phytochrome, exhibiting the topography of its	
	tetrapyrrolic chromophore.	124
4.28	Levels of electronic spectral transitions of chlorophyll "a" (Chl a), and Pr and Pfr forms	
	of phytochrome.	124
4.29	UV spectroscopy. Schematic of an UV spectrometer.	125
4.30	(A) Absorbance spectra of unbound (gray, solid line), minimizer-bound (gray, dashed	
	<i>line</i>) or enhancer-bound (<i>black</i> , <i>dashed line</i>) wt GFP (a) or eGFP (b). The absorption at	
	395 nm corresponds to the protonated chromophore and absorption at 475 nm to the	
	anionic chromophore.	126
4.31	Gaussian (A) and Lorentzian (B) spectra (bottom), with their first to fifth derivative	100
4.00	spectra.	129
4.32	Absorbance change in DNA at 260 nm as it is heated to melting point.	132
4.33	DNA denaturation curve showing absorbance change at 260 nm as a function of	100
	temperature.	132
4.34	vant Horr plot of DINA denaturation.	133
4.35	Absorption () and second derivative () spectra of a protein dissolved in 10 mM	104
1.24	sodium pnosphate buffer, pH 6.0 at 25 C.	134
4.36	Absorbance, fluorescence, and phosphorescence of chrysene.	136

4.37 Schematics of instrumentation of fluorimeter.

136

xv

xvi		Figures
4.38	Spectrum of phenanthrene.	139
4.39	Differential ANS binding to different conformational states of protein.	142
4.40	Fluorescence maximum for BoNT/A LC in aqueous urea solution as a function of urea	
	concentration.	142
4.41	Schematic representation of FRET analysis.	143
4.42	Immunofluorescence microscopy.	145
4.43	Schematic representation of instrumentation for circular dichroism spectroscopy.	146
4.44	Protein secondary structure elements and their CD spectrum.	148
4.45	Denaturation of a protein as measured by CD spectroscopy.	150
4.46	Region of different amide bands of protein.	152
4.47	Deconvolution of amide–I band.	153
4.48	The separating action of a porous polyacrylamide gel.	156
4.49	Formation of polyacrylamide gel.	157
4.50	Schematic of basic set-up for polyacrylamide gel electrophoresis.	159
4.51	Concept of pI and plot of net charge with respect to pH.	163
4.52	Representation of capillary electrophoresis instrumentation.	167
51	(A) Purine bases found in DNA and RNA (B) Pyrimidine bases found in DNA and	
5.1	RNA	171
52	Chemical structures of RNA and DNA	172
5.3	A polynucleotide chain made up of a series of 5'-3' ribose-phosphate or deoxy-ribose	1,2
5.6	phosphate backbone.	173
5.4	Primary structure of a polynucleotide.	174
5.5	The DNA double helix.	175
5.6	The double helical DNA molecule modeled by Watson and Crick.	175
5.7	Different forms of DNA helical structures.	176
5.8	(A) Hairpin loop structure of RNA. (B) Random coil conformation of RNA.	178
5.9	Supercoiling in DNA causes the duplex to be twisted around itself in space.	179
5.10	Melting curve of DNA.	180
5.11	Compact organization of DNA in the nucleus.	181
5.12	The central dogma of molecular biology: DNA to RNA to protein.	182
5.13	Schematic view of the role of nucleic acids in transmission of genetic information.	185
5.14	Size of haploid genomes of different organisms represented in logarithmic scale.	189
5.15	Schematic representation of DNA gel electrophoresis technique.	194
5.16	Oligonucleotide extension mutagenesis.	199
5.17	PCR-based mutagenesis.	200
5.18	Mechanism of CRISPR/Cas9 genome editing.	202
5.19	Direct labeling of nucleic acid probes by fluorescent nucleotides.	203
5.20	Mechanism of indirect non-isotopic labeling of nucleic acid probes.	203
5.21	Southern blot apparatus and method.	204
5.22	Schematic representation of the method of bacterial colony hybridization.	205
5.23	Illustration of fluorescence in situ hybridization technique.	207
5.24	The polymerase chain reaction.	209
5.25	Nested PCR.	211
5.26	$Schematic \ representation \ of \ detection \ of \ amplified \ products \ in \ real \ time \ using \ TaqMan$	
	probe.	212

Figure	Figures	
5.27	Illustrating how a molecular beacon is used for quantification of amplified PCR products	
	in real time.	213
5.28	Mechanism of detection of amplified products in real time using Scorpion probes.	213
5.29	Reverse transcriptase PCR.	214
5.30	Mechanism of inverse PCR for amplification and characterization of unknown sequences	
	in a DNA molecule.	215
5.31	General mechanism of pyrosequencing reaction method.	219
5.32	Next generation sequencing on an Illumina platform.	221
5.33	Principle of Ion Torrent Sequencing Reaction.	222
5.34	Illustration of mechanism of nanopore DNA sequencing technology.	225
5.35	Schematics of Northern blot.	227
5.36	Schematics of RNA protection assay.	228
5.37	Schematics of (A) one-step PCR and (B) two-step PCR.	229
5.38	Flow chart of differential display PCR.	231
5.39	Steps involved in CISH/FISH.	232
5.40	Typical DNA microarray procedure.	234
5.41	Schematic of the SAGE procedure.	235
6.1	Types of cells: Animal, plant, and bacterial cells.	245
6.2	The cell cycle.	247
6.3	(A) The different phases of mitosis. (B) Structure of mitotic spindle.	248
6.4	Different techniques used for primary explant and setting up primary cell culture.	253
6.5	Preparation of primary cell culture by trypsin disaggregation (A) warm trypsinization, (B) cold trypsinization.	254
6.6	Primary explant and outgrowth thereof. Microphotographs of a Giemsa-stained primary	
	explant from human non-small cell lung carcinoma. (A) Low-power (4× objective)	
	photograph of explant (top left) and radial outgrowth. (B) Higher-power detail (10×	
	objective) showing the center of the explant to the right and the outgrowth to the left.	255
6.7	Organotypic culture.	257
6.8	The totipotent, pluripotent, multipotent, and unipotent stem cells.	262
6.9	Schematics of subculturing cells.	263
6.10	(A) Growth curve of cells in general. Log plot of number of cells (y-axis) versus time	
	(x-axis) from a subculture, showing the lag phase, exponential phase, plateau, and death	
	phase. (B) Cell growth curves of a few cell lines.	264
6.11	Thawing and storing procedures for cells.	267
6.12	(A) Schematic of a light microscope. (B) Bright field image of a neuron-astrocyte	
	co-culture taken from a light microscope.	270
6.13	(A) Schematic diagram of a fluorescence microscope. (B) Fluorescent image of	
	nonactivated and activated astrocyte in healthy and AD (Alzheimer Disease) model.	
	Protein was tagged with Alexa fluor 488 dye (green) and nucleus was tagged with DAPI	
	(4',6-diamidino-2-phenylindole; blue).	271
6.14	(A) Diagram of a confocal microscope. (B) Z-stack image of SHSY-5Y cell demonstrating	
	internalization of a protein (green).	271
6.15	Schematics of light, transmission electron, and scanning electron microscopy.	272
6.16	A specimen atomic force microscopy curve.	275

Cambridge University Press 978-1-108-48640-8 — Practical Techniques in Molecular Biotechnology Bal Ram Singh , Raj Kumar Frontmatter <u>More Information</u>

xviii

6.17	AFM images of HT-29 cells carried out in the non-contact mode using a cantilever of 0.01N/m spring constant. (A) $50 \mu m \times 50 \mu m$ area of the untreated HT-29 cells; (B) $50 \mu m \times 50 \mu m$ section of HT-29 cell monolayer after 15 min. treatment; inset 20 $\mu m \times 20 \mu m$ area of the same sample; (C) $50 \mu m \times 50 \mu m$ section of HT-29 cell monolayer after 2 hour treatment; inset 20 $\mu m \times 20 \mu m$ area of the same sample; (C) $50 \mu m \times 20 \mu m$ area of the same sample.	275
7.1	A model of a Y-shaped antibody structure with Fc and Fab domains.	284
7.2	(A) Schematics for defining affinity. (B) Schematics of avidity.	285
7.3	Representation of linear and conformational epitopes.	287
7.4	Schematics of direct ELISA.	289
7.5	Schematics of the indirect ELISA.	291
7.6	Overview of direct sandwich ELISA.	291
7.7	Schematics of competitive ELISA. Ag: antigen; Ab: antibody.	292
7.8	Schematics of (a) direct, and (b) indirect immunofluorescence.	294
7.9	Schematics of the Western blot.	296
7.10	Schematics of immunoprecipitation (IP).	299
7.11	Steps for immunoprecipitation.	300
7.12	Schematics of radial immunodiffusion.	303
7.13	Schematics of Ouchterlony double immunodiffusion.	304
7.14	Schematics of radioimmunoassay.	305
7.15	Crossed immunoelectrophoresis.	307
7.16	Rocket electrophoresis.	308
7.17	Schematics of an immunosensor.	309
7.18	Schematics of SPR and description of the plot obtained in an SPR experiment.	310
7.19	Fusion of B-cell to myeloma cell to create hybridoma.	311
7.20	Steps to produce monoclonal antibodies.	312
7.21	Different mechanism of mAbs action for attacking a tumor cell.	313
7.22	Antibody fragments with therapeutic potential.	315

Tables

1.1	Events that shaped modern biotechnology.	2
1.2	Course outline and tentative schedule of a biochemical technology course.	12
2.1	Comparison of various expression systems.	27
2.2	Various sigma factor of <i>E.coli</i> .	32
2.3	Available recombinant protein tags and their size and purification methods.	36
2.4	Common nicking sites.	36
2.5	Cell disruption techniques.	38
2.6	Ion-exchange resins	40
3.1	Comparison between different types of inhibition.	71
3.2	Mean free path and required pressure for various analyzer types.	86
3.3	Summary of different ion sources.	91
3.4	Masses of most often found immonium ions.	96
3.5	Common amino acids and their monomeric mass units.	98
3.6	List of common conflicting masses encountered in the mass spectrometry of peptides	
	and proteins.	99
3.7	Important chemicals that are used for fragmentation of peptide chains for mass	
	spectrometry. X is any amino acid residue.	100
4.1	Important physical attributes of biomolecules and connected biophysical techniques to	
	study them.	104
4.2	Important chemical attributes of biomolecules and connected biophysical techniques	
	to study them.	104
4.3	Wavelength maxima and molar extinction coefficients of representative chromophores.	127
4.4	Chemical structures of some compounds and their exhibition of fluorescence and	
	chemiluminescence.	137
4.5	Protein secondary structure elements and their maxima and minima in CD spectroscopy.	147
4.6	Characteristic infrared band of peptide linkages.	153
4.7	IEF Standard Proteins.	165
5.1	Nomenclature of nucleic acid base derivatives.	173
5.2	Comparison of parameters in the different forms of helical structures of nucleic acids.	177
5.3	Some examples of frequently used type II restriction endonucleases.	196

хх		Tables
5.4	Types of RNA and their functions.	226
5.5	Advantages and disadvantages of one-step and two-step PCRs.	230
5.6	Comparison of CISH with FISH.	231
6.1	Structure and functions of different parts of a cell.	243
6.2	Difference between adherent and suspension cultures.	259
6.3	Comparison of light microscopy with electron microscopy.	273
6.4	Differences between TEM and SEM.	274
7.1	Advantages and disadvantages of direct and indirect immunofluorescence.	294
7.2	Differences between use of agarose and magnetic beads in immunoprecipitation.	298
7.3	Comparison of radial and Ouchterlony double diffusion techniques.	304
7.4	List of therapeutic antibodies approved by the US FDA.	316
A3.1	Critical values for the rejection of Q_{exp} .	328
A3.2	T-values for various levels of probability.	329
A3.3	Standards for rejection/acceptance of the null-hypothesis.	329
A5.1	SI system base units.	333
A5.2	SI system multiple unit form prefixes.	333

Preface

Over the last 50 years, the development of far superior understanding of genomics and proteomics, has spurred the growth of biotechnology to a level where the revenues the sector generates are now of the order of about \$430 billion a year and growing at approximately 8.3%. Directed manipulation of cell genes and development of recombinant technologies are allowing research institutions and industry to create fresh platforms for development of new technologies, products, markets, and indeed expectations. All this is contributing to ever increasing the pervasive influence of the biological organism in our everyday life.

Use of biotechnological processes is not new. For centuries some of these techniques have been used in the manufacturing of wines, beers, milk-based products, bread, and so many others. Although how biological mechanisms worked exactly was not well understood, the optimized biotechnological processes involved for such manufacturing were well established.

A fascinating aspect of biotechnology is its multidisciplinary nature, which draws upon concepts, theory and practices from a gamut of different fields including biology, chemistry, biochemistry, molecular biology, genetics, microbiology, and process engineering.

Although there are several books available on bioanalytical techniques, cellular biology, molecular biology, biotechnology, and so on, there is no readily available source of information that comprehensively yet concisely presents the techniques employed in biotechnology. Accordingly, a book covering the range of principles and applications of biotechnology should be handy for research students.

One of the goals of a science education is to inculcate scientific literacy in such a way that students should be free of any bias while making decisions on day-to-day scientific problems. In this case, the purpose of such education is that students imbibe adequately, the principles, the theory and applications thereof, to develop laboratory and practical research skills focused on the solution of a real scientific problem. This book, on biotechnology, intends doing just that.

Our intention is to familiarize students with the basics of some of the well-known experimental biotechnology processes and practices, for their use and application in research. By referring to this book, students will find the contents useful in strengthening their basic skills in their field of interest and applying their learning to real-world problems. In the experience of the authors, a focus on practical problems helps students learn biochemical techniques in a context, and allows better integration with research projects. This book, at the graduate level (for biotechnology, chemical biotechnology, molecular biotechnology and cell biology courses), should be invaluable for learning the basics of biochemical and biophysical techniques, and would help build a strong foundation for further biomedical courses.

It consists of detailed treatment and study of the fundamental principles and techniques of biotechnology, essential for the understanding of biochemical/biophysical phenomena. Theoretical principles behind

xxii

Cambridge University Press 978-1-108-48640-8 — Practical Techniques in Molecular Biotechnology Bal Ram Singh , Raj Kumar Frontmatter More Information

Preface

experimental techniques and procedures, have been explained extensively and this has been reinforced with assignments and data analysis. This book is replete with examples and questions posed for a better grasp of the topics. In addition, the book contains information on data analysis, statistics, units, safety, and best practices. Unique features of this book include new pedagogical approaches (such as questions to ponder over and protocols), real-world relevance, clear illustrations, and integrated biochemical and biotechnological concepts. All the while, the focus has been on basic concepts combined with some key applications.

Using this book, an instructor can design an experimental course for biochemistry, molecular biology, cellular biology, or biophysics. Instructors may use this book as a quick guide to prepare their lectures and laboratory assignments. Further, this book provides instructors with references. These may be made use of to develop innovative theoretical and practical courses for the fields of biochemistry, biophysical chemistry, and biotechnology.

A well-designed research-based experimental laboratory course is critical for research students interested in following biotechnology and related disciplines, and this book will help immensely in developing such courses.

Conceptualizing this book involved years of work and interaction with several experts in the area of biochemistry and biotechnology. The book has been developed through extraction of topics, experiments, and experience from several courses that were taught by the authors over a long a period of time. These courses included, Biochemistry Laboratory, Physical Biochemistry, Introduction to Biomedical Engineering and Biotechnology, Chemical Biology and Technology, Biological Spectroscopy, Fluorescence Spectroscopy for Biochemists, and Instrumental Methods of Analysis.

We would like to extend our gratitude to Dr. Toby Dills, Dr. Maolin Guo, Dr. Emmanuel Ojadi, Dr. Tim Su, Dr. Valeri Barsegov, Dr. Robert Weis, Dr. Fen-Ni Fu, Dr. Shuowei Cai, Dr. Li Li, Dr. Brian Blanchette, Dr. Yu Zhou, Dr. Roshan Kukreja, Dr. Tzuu-Wang Chang, Dr. Tom Feltrup, Dr. Anne-Marie Bryant, Dr. Ghuncha Ambrin, and many students, including Mario Oliveira, Robin Nunes, Yuhong Hu, for interacting, collaborating, contributing, and supporting the development of the many ideas discussed in this book.

We would especially like to mention Dr. Brian Blanchette, who as teaching assistant in one of the courses, organized several experiments some of which are included in the book. Several staff members at the University of Massachusetts Dartmouth and the Institute of Advanced Sciences, including Mr. Paul Lindo, Mr. Steve Riding, and Ms. Jenny Davis played significant roles in advancing experimental parts of techniques included in this book.

Finally, we are grateful to the Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, and the Institute of Advanced Sciences for providing opportunities and support for our academic research and teaching to the level required for completing this work, for furthering the knowledge of future students and researchers.

June, 2021

Bal Ram Singh Raj Kumar