

Plant Physiology

New findings populate the enormous literature on plant physiology, almost on a daily basis. This text is a detailed introduction to the essential concepts of this rapidly advancing field of study; to important physiological aspects related to the functioning of plants. It covers a wide range of topics including water, absorption of water, ascent of sap, transpiration, mineral nutrition, fat metabolism, enzymes and plant hormones. Photosynthesis, respiration and nitrogen metabolism get discussed in separate chapters because their contribution towards food security, climate resilient farming and sustainable life needs highlighting. Unlike other books on the subject, this text lays due emphasis on the conceptual framework.

Our emphasis is on the concepts of water use efficiency (WUE) and nitrogen use efficiency (NUE), to lessen pressure and our dependence on our natural resources. A special feature of the book is a discussion on 'molecular mechanism of abiotic and biotic stresses'. Seminal contributions of an 'international group of plant physiologists' and 'implications of plant physiology in agriculture' would be of immense interest to the readers. Alongside its emphasis on theoretical concepts, this text details experiments relating to most topics/chapters. A structured approach including principle, procedure, discussion, results and observation, and precautions has been used to explain the experiments.

S. L. Kochhar taught courses in economic botany and plant physiology at Sri Guru Tegh Bahadur Khalsa College, University of Delhi, for more than four decades (1965–2007). His areas of interest include botany, crop science, tropical crops and plant physiology.

Sukhbir Kaur Gujral has been teaching in the Department of Botany at Sri Guru Tegh Bahadur Khalsa College, University of Delhi for more than three decades. Her areas of interest include plant physiology and cell biology.

Plant Physiology

Theory and Applications

2nd Edition

S. L. Kochhar Sukhbir Kaur Gujral

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi-110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781108486392

© S. L. Kochhar and Sukhbir Kaur Gujral 2020

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

1st edition published under Foundation imprint (now defunct) in 2017

2nd edition first published 2020

Printed in India

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data

Names: Kochhar, S. L., author. | Gujral, Sukhbir Kaur, author.

Title: Plant physiology : theory and applications / S. L. Kochhar, Sukhbir Kaur Gujral.

Description: Second. | New York, N.Y.: Cambridge University Press, [2020] | Includes bibliographical references and index.

Identifiers: LCCN 2020001149 (print) | LCCN 2020001150 (ebook) | ISBN 9781108486392 (hardback) | ISBN 9781108707718 (paperback) | ISBN 9781108639736 (ebook)

Classification: LCC QK711.2 .K63 2020 (print) | LCC QK711.2 (ebook) | DDC 581.3--dc23

LC record available at https://lccn.loc.gov/2020001149

LC ebook record available at https://lccn.loc.gov/2020001150

ISBN 978-1-108-48639-2 Hardback

ISBN 978-1-108-70771-8 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Foreword		xiii	
Preface to the Second Edition		XV	
Preface to the First Edition		xvii	
Ack	Acknowledgements Some Common Abbreviations used in the Text		xxi xxiii
Son			
Abl	reviat	ions for Units	xxvii
		Unit I: Water and Mineral Translocation in Plants	
1.	Plar	nt-Water Relations	3
	1.1	Water – A Universal Solvent	3
	1.2	Permeability	16
	1.3	Diffusion, Imbibition, Osmosis and the Water Potential Concept	29
	Revi	ew Questions	42
2.	Abs	orption and Translocation of Water	51
	2.1	Absorption of Water	51
	2.2	Translocation of Water	60
	Revi	ew Questions	68
3.	Tran	nspiration	75
	3.1	Foliar Transpiration	75
	3.2	Guttation	76
	3.3	Bleeding	76
	3.4	Stomata	77
	3.5	Blue Light Responses	80
	3.6	Transpiration: A Two-Stage Process	82
	3.7	Plant Antitranspirants	89
	3.8	Factors Affecting Transpiration	90
	3.9	Significance of Transpiration	92

	Contents
VI	CONTANTS

	3.10 Review	Transpiration Ratio and Water Use Efficiency v Questions	92 95
4.	Mine	ral Nutrition and Absorption	100
1.	4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	Techniques Used in Nutritional Studies Criteria of Essentiality Essential Elements Iron Stress Mycorrhizae Mechanism of Mineral Absorption Transmembrane Potential Ion Antagonism Radial Path of Ion Movement through Roots	101 103 105 116 118 120 131 131
	4.10	Mineral Toxicity	133
	Review	v Questions	134
		Unit II: Metabolism and Bioenergetics	
5.	Conc	epts of Metabolism	153
	5.1	Metabolism	153
	5.2	Concepts of Thermodynamics	159
	5.3	Laws of Thermodynamics	161
	5.4	Redox Reactions	163
	5.5	ATP: The Energy Currency of the Cell	164
	5.6	Coupled Reactions	165
	Reviet	v Questions	165
6.	Enzy	mes	168
	6.1	Historical Background	168
	6.2	Characteristics of Enzyme-catalyzed Reactions	169
	6.3	Cofactors Engage Classification	170
	6.4 6.5	Enzyme Classification Machanism of Enzyma Action	173 174
	6.6	Mechanism of Enzyme Action Isozymes (Isoenzymes)	180
	6.7	Multienzyme Complex	181
	6.8	Enzyme Regulation	183
	6.9	Michaelis Constant (K _m)	186
	6.10	Enzyme Inhibition	190
	6.11	Factors Affecting Enzymatic Reactions	193
	6.12	Uses of Enzymes	195
	Revier	v Questions	197
7.	Photo	synthesis	201
	7.1	Historical Perspective	202
	7.2	Chloroplast as Solar Harvesting Enterprise	203
	7.3	Absorption and Action Spectrum	209

			Contents	vii
	7.4	The Light Reaction (Photochemical Phase)		212
	7.5	The Dark Reactions		227
	7.6	Photorespiration		234
	7.7	Hatch-Slack Pathway (C4 Syndrome)		236
	7.8	CAM Pathway (Crassulacean Acid Metabolism)		240
	7.9	Factors Affecting Photosynthesis		241
	Revie	w Questions		245
8.	Carb	ohydrate Metabolism		253
	8.1	Sucrose and Starch Metabolism		253
	8.2	Cellulose Synthesis		259
	8.3	Fructans		260
	8.4	Carbohydrate Metabolism in Plants and Animals		263
	Revie	w Questions		264
9.	Resp	iration		267
	9.1	Glycolysis		268
	9.2	Oxidative Decarboxylation of Pyruvate to Acetyl CoA		271
	9.3	Citric Acid Cycle (Krebs Cycle)		272
	9.4	Electron Transport System and Oxidative Phosphorylation		275
	9.5	Regulation of Respiratory Pathways		283
	9.6	The Krebs Cycle as a Second Crossroad of Metabolic Pathways		286
	9.7	Alternative Electron Transport Pathways in Plant Mitochondria		287
	9.8	Gluconeogenesis		291
	9.9	Pentose Phosphate Pathway (or Oxidative Pentose Phosphate Pathwa	v)	291
	9.10	Anaerobic Respiration	<i>J</i> /	295
	9.11	Alcoholic Fermentation		295
	9.12	Lactic Acid Fermentation		296
	9.13	A Summarized Overview of the Various Sites of Cellular Respiration		
	,	alongside Diagrammatic Representation		297
	9.14	Other Substrates for Respiration		298
	9.15	Respiratory Quotient		298
	9.16	Factors Affecting Respiration		300
		w Questions		303
10.	Nitro	ogen Metabolism		313
	10.1	Nitrate Assimilation		313
	10.2	Ammonium Assimilation		316
	10.3	Amino Acids and Their Structure		321
	10.4	Proteins		323
	10.5	Nucleic Acids		329
	10.6	Molecular (Biological) Nitrogen Fixation		332
	10.7	Nitrogen Cycle		339
	10.8	Nitrogen Use Efficiency (NUE)		341
	10.9	Carnivorous Plants		343
		w Questions		345
		~		

viii Contents

11	T' '134 (1 1'	250
11.	Lipid Metabolism	352
	11.1 Fatty Acids: Structure and Properties	353
	11.2 Fatty Acid Oxidation	356
	11.3 Fatty Acid Synthesis	362
	11.4 Lipid–Sugar Conversion: The Glyoxylate Pathway	364
	11.5 Genetic Engineering of Lipids	367
	Review Questions	368
12.	Sulphur, Phosphorus and Iron Assimilation in Plants	374
	12.1 Sulphur Metabolism	374
	12.2 Phosphorus Metabolism	380
	12.3 Iron Metabolism	383
	Review Questions	385
13.	Phloem Transport	388
	13.1 Evidences in Support of Phloem Transport	388
	13.2 Composition of the Photoassimilates Translocated in the Phloem	390
	13.3 Anatomy of Phloem Tissue	390
	13.4 Mechanism of Phloem Transport	391
	13.5 Phloem Loading and Unloading	395
	13.6 Photoassimilate Distribution: Allocation and Partitioning	400
	Review Questions	402
	Unit III: Growth and Development	
14.	Dormancy, Germination and Flowering	411
	14.1 Growth Curve	412
	14.2 Seed Germination	413
	14.3 Dormancy	416
	14.4 Photoperiodism	423
	14.5 Vernalization	433
	14.6 Biological Clock and Circadian Rhythms	436
	14.7 Photomorphogenesis	439
	Review Questions	450
15.	Plant Photoreceptors	453
	15.1 Phytochrome	454
	15.2 Cryptochromes	462
	15.3 Phototropins	464
	15.4 UV Resistance Locus 8 (UVR8)	466
	Review Questions	467
16.	Plant Hormones and Signal Transduction	468
	16.1 Auxin: The Growth Hormone	468
	16.2 Gibberellins: Regulators of Plant Height	480
	16.3 Cytokinins: Regulators of Cell Division	485
	16.4 Abscisic Acid: A Seed Maturation and Anti-stress Signal	491

			Contents	i
	16.5 16.6 16.7	Ethylene: The Gaseous Hormone Polyamines Salicylic Acid	5 5	196 100 102
		Nitric Oxide		02
	16.9	Strigolactones		04
		Jasmonates Pressingstoreids		05
		Brassinosteroids Signal Perception and Transduction		06 09
		v Questions		516
17.	Riper	ning, Senescence and Cell Death	5	26
	17.1	Fruit Ripening	5	526
	17.2	Plant Senescence	5	30
	Revier	v Questions	5	40
		Unit IV: Physiological Stress and Secondary Metabolites – Their Role in Metabolism		
18.	Abiot	tic and Biotic Stress	5	45
	18.1	Abiotic Stress	5	46
	18.2	Biotic Stress	5	80
	Reviev	v Questions	5	85
19.	Secor	ndary Plant Metabolites	5	90
	19.1	Terpenes (Terpenoids)	_	91
	19.2	Phenolic Compounds		95
	19.3	Alkaloids		02
	19.4	Glycosides		04
	19.5	Role of Secondary Metabolites in Plant Defences v Questions		507 508
	Reviet	v Questions	0	UC
		Unit V: Crop Physiology – An Innovative Approach		
20.		ultural Implications of Plant Physiology		13
		Role of Plant Hormones		514
	20.2	Photoperiodism, Vernalization and Dormancy		515
	20.3	Phloem Transport		516
	20.4	Mineral Nutrition Penral dustive Development		516
	20.5	Reproductive Development Fruit Preservation		518 518
	20.7	Nitrate Assimilation		518
	20.7	Plant Secondary Metabolites (Natural Products)		518
	20.9	Strategies Employed by Plant Breeders to Eradicate Weeds in Crop Fi		519
	20.10	Genetic Engineering of Crops		520
	20.11	Developing Crops with Increased Tolerance to Stress (Biotic and Abic		521
	20.12	Biofortification for Selecting and Developing Crop Cultivars Denser is		
		Micronutrients		521

x Contents

	20.12	Canatia Engineering of Linida	622
		Genetic Engineering of Lipids Engineering Cell Wall-degrading Enzymes into Growing Plants to Deliver	623
		Cost-effective Bioethanol Technology	623
		Unit VI: Breakthroughs in Plant Physiology	
21.	Semi	nal Contributions of Plant Physiologists	627
	Thom	as Graham	627
	Ernst	Münch	627
	Paul J	. Kramer	628
	H. F.	Γhut	628
	Denn	is R. Hoagland	629
	A. He	mantaranjan	629
	Emar	uel Epstein	630
	J. D. S	•	631
		Scarth	631
		Steward	631
	•	Levitt	632
		Knoop	633
	-	De Vries	633
	J. C. E		633
	-	en Hales	634
		Renner	634
		rick Sanger	634
		Fischer	634
		shland	635
		van Niel	635
		Warburg	636
		lackman	636
		el I. Arnon	637
	Besse		637
		Tolbert	638
		é Jagendorf	638
		t Emerson	639
		Govindjee	639
	,	endall Duvasas	640
		Duysens n Calvin	641 641
		t Szent-Györgyi A. Krebs	641
		A. Kreds Beevers	642 642
		N. Went	642
	F. Kö		643
	R. Ga		643
		Thimann	643
		eb Haberlandt	644
	COLL	CD 11MDC11M1M1	0.77

		Contents xi
	Johannes van Overbeek	644
	Folke Skoog	644
	D. S. Letham	645
	F. T. Addicott	645
	P. F. Wareing	645
	J. E. Varner	645
	L. G. Paleg	646
	L. H. Flint	646
	Michael H. Chailakhyan	648
	H. A. Borthwick	648
	W. W. Garner and H. A. Allard	649
	Hans Möhr	649
22.	The Status and Development of Plant Physiology in India	651
	Unit VII: Some Experimental Exercises	
23.	Experimental Exercises	663
	Glossary	823
	References	851
	Index	856
	Colour Plates	863

Plant Physiology is a rapidly advancing field of study where new findings are surfacing in the literature almost daily. The ways of teaching the subject at both undergraduate and postgraduate levels have undergone a sea change and there is now a far greater emphasis on the conceptual framework than there was some years ago. It has become increasingly difficult for students to keep abreast with the ongoing explosion of knowledge in this field.

This book on Plant Physiology - Theory and Applications is both authoritative and timely. The book focuses on in-depth analysis of wide-ranging topics included in the Plant Physiology syllabi of different universities in India and overseas. The textbook starts with water and concludes with experimental exercises, project works and physiological set-ups or demonstration experiments. The chapters dealing with photosynthesis, respiration, and nitrogen metabolism are important since an understanding of their role for sustaining life on earth is essential for food security and climate resilient farming. Experiments are underway to convert C3 plants like rice into C4 plants in order to improve their photosynthetic efficiency. Researches are underway to transfer nitrogen-fixing genes into cereal crops to lessen our dependence on nitrogenous fertilisers. I am confident that the students going through the book will be stimulated to undertake the innovative experiments which can help to shape the physiological rhythms of plants to the emerging era of global warming and climate change. The material is presented in a concise and lucid manner so that the readers can easily comprehend the conceptual complexities of recent achievements in the field. A discussion of Molecular Mechanism of Abiotic and Biotic Stresses would be of immense help to the students. In view of climate change, the authors have emphasised the concepts of water use efficiency (WUE) and nitrogen use efficiency (NUE). A feature of the book is the inclusion of Review Questions with answers at the end of each chapter. This would be of enormous help to the students preparing for their academic course work.

We are indebted to Dr S. L. Kochhar and Dr Sukhbir Kaur Gujral for their labour of love in presenting the secrets of life to young scholars in an easily understandable manner. I also compliment Cambridge University Press for publishing this book as a part of their commitment to make scientific knowledge available in an authentic manner at affordable prices to young university students. I hope the book will be read and used widely.

M. S. Swaminathan Founder Chairman, M. S. Swaminathan Research Foundation Ex-Member of Parliament (Rajya Sabha)

Preface to the Second Edition

The Foundation Imprint of our book, *Plant Physiology: Theory and Applications*, which was first published in 2017 by CUP, India, met with an overwhelming response and the stocks were exhausted within a year or so. In a large measure, the textbook succeeded very well in addressing the need for such a tome amongst students and scholars in the fields of botany and agricultural sciences. However, review inputs and advice from subject experts overseas and within the country, as well as suggestions offered to us by the editorial staff of the Cambridge University Press, led us to considerable soul-searching on how to enhance its value.

And so, it gives us great pleasure in presenting to the readers an expanded and updated version whereby the readers can assimilate knowledge without undue effort as they imbibe; this self-contained textbook should, therefore, have a much wider appeal. The material is presented in a concise and lucid manner so that the readers can develop better understanding of the conceptual complexities in the field. We hope it will prove to be even more useful than the previous ones.

The salient features of this Second Edition are as follows:

The present edition is divided into 7 units, with a total of 23 chapters in all. In addition to the accurate and authoritative textual content in each chapter, we have endeavoured to present, through models and flow charts, more information about growth and development such as mode of action, physiological role, biosynthesis and inactivation of auxins, gibberrelins, ethylene and abscisic acid. The role of recently discovered hormones such as jasmonates, polyamines, salicylic acid and nitric oxide and others has been emphasised. The mode of action of phytochrome-mediated responses based on their requirements such as LFRs, VLFRs and HIRs finds a special mention. Included in the new edition are chapters on 'Concepts of Metabolism', 'Carbohydrate Metabolism', 'Sulphur, Phosphorus and Iron Assimilation in Plants', 'Plant Photoreceptors' and 'Ripening, Senescence and Cell Death' as well the work on *Arabidopsis thaliana* as an experimental tool and a model system for research in genetics and molecular biology, detailing its advantages over other plant material. A special feature of the chapter on Stress Physiology is an invited article on 'Molecular Mechanism of Abiotic and Biotic Stresses' which is being reproduced in the original. We have also included here, a discussion of Reactive Oxygen Species (ROS) and the Asada-Halliwell or Ascorbate-Glutathione Pathway.

xvi Preface to the Second Edition

Other useful additions are the inclusion of numericals dealing with pH, the molecular movement of water between cells, and energy transformation during respiratory and fat metabolism. We have laid due emphasis on the concepts of water use efficiency (WUE) and nitrogen use efficiency (NUE) to lessen pressures and dependence on our natural resources. Furthermore, we have devoted one chapter to the seminal contributions of an international group of plant physiologists whose discoveries have impacted the very fundamentals of this field. We have also dealt with classical experiments that have shaped its development. Another addition that should be of immense importance to readers is the chapter on 'Implications of plant physiology in agriculture'. And as a special for Indian readers, is the chapter on the development and status of plant physiology in India. Yet another significant addition is the inclusion of experimental exercises, project work and physiological set-ups or demonstration experiments. By engaging themselves in conducting such experimentation, students would not only hone their practical skills in plant physiology but would also imbibe aspects of the subject with greater thoroughness - so vital for their semester course work. The fact is that we have attempted to integrate into this compendium, relevant practical details, such as Requirements, Principle, Methodology, Observation, Discussion and Conclusions, et al. This approach should enable the students to have an access and a deeper insight into experimental working and how it has led to significant findings.

Another salient feature is the inclusion of Review Questions with answers at the end of each chapter which should be of much help to the students, preparing for their examinations, (including the competitive ones). A glossary is provided to assist students in reviewing both the new and the familiar terms. The compilation is profusely illustrated to enhance the clarity and the utility of the book. At the end of units, we have interpolated many high-resolution coloured images pertaining to the subject matter, besides over a hundred well-labelled line diagrams. The online resource material includes discussions like 'Various Laboratory Techniques' and 'Microchemical Tests for Major Food Constituents'.

Our earlier book, *Comprehensive Practical Plant Physiology*, was first published in 2012 and was very warmly received by students and teachers alike. In a large measure, the book succeeded in generating a lot of interest amongst students and scholars alike, in the field of Botany and Agricultural Sciences. However, the readers have urged us to restructure the text and update the information so that the book becomes self-contained in itself, matching other leading titles in the field of plant physiology.

During the course of reorganisation, we were greatly influenced by the feedback reviews we received from the many experts based within the country and in Southeast Asia, as well as the suggestions offered to us by the editorial staff at Cambridge University Press, India. We are much pleased to present to our readers an altogether new book, in which we have ensured a continuous flow of information so that the readers can assimilate the knowledge without too much effort. The material is presented in a concise and lucid manner, so that the readers can comprehend the conceptual complexities, come to know about the recent achievements in the field, and share the joy that we feel for this subject.

Salient features of this edition are as follows:

In addition to the generalized and well-informed textual content in each chapter, we have attempted to highlight the important information through models and flow charts; such as the information in the chapter on 'growth and development' regarding various topic like, mode of action, physiological role, biosynthesis and inactivation of auxins, gibberellins, ethylene, and abscisic acid. The role of the recently discovered hormones such as jasmonates, polyamines, salicylic acid and nitric oxide, etc., has also been emphasised upon appropriately. The mode of action of phytochrome-mediated responses based on their requirements such as LFRs, VLFRs and HIRs, also finds a special mention. Included also in the discussion is the work on *Arabidopsis thaliana* as an experimental tool and model system for research in genetics and molecular biology, enumerating its advantages over other plant materials. We have also included a discussion on Reactive Oxygen Species (ROS) and Asada-Halliwell or Ascorbate-Glutathione Pathway in the chapter 'Stress Physiology and Secondary Metabolites'.

Another striking feature is the inclusion of numerical questions dealing with pH, molecular movement of water between cells and energy transformation during respiratory and fat

xviii Preface to the First Edition

metabolism. Furthermore, we have consolidated in a single chapter the seminal contributions of an international group of plant physiologists whose discoveries impacted our fundamental thoughts. We have not hesitated to include the classical experiments that had a revolutionary impact on the development of the subject. A chapter on the development and status of plant physiology in India will be of special interest to the Indian students. Another significant addition is the inclusion of Experimental Exercises, Project work and Physiological set-ups or Demonstration Experiments. This is an attempt to make students feel comfortable with their semester course work and hone their practical skills in plant physiology. In fact, we have tried to integrate the practical details, such as Requirements, Principle, Methodology, Observation, Discussion and Conclusions, etc., for the very same reason. This approach should enable the students to have not just an access but a deep insight into the various experimental working and findings.

Another salient feature of the book is the inclusion of Review Questions along with their answers at the end of each chapter, which would be of great help to the students preparing for their examinations. A glossary is provided to help students in reviewing both new and familiar terms. The book is profusely illustrated to enhance the clarity and utility of the book.

The online resource material includes chapters like, The Status and Development of Plant Physiology in India and Various Laboratory Techniques; and several appendices like, Microchemical Tests for Major Food Constituents, Concepts of Thermodynamics, The Laws of Thermodynamics, Redox Reactions, Chemosynthesis, ATP: The Energy Currency of the Cell, Coupled Reactions and Metabolic Pathways.

We wish to express our deep gratitude to Professor M. S. Swaminathan FRS, World Food Laureate, Founder Chairman and Mentor, M. S. Swaminathan Research Foundation, Chennai, not only for his kindness in writing the Foreword to the book but also for his great encouragement and continued interest in this project. We are also thankful to his Foundation for sending us pictures of *Rhizophora mucronata* – a component of the mangrove ecosystem.

We wish to offer our gratitude to Professor S. C. Maheshwari, well-known for his pioneering work on haploid from pollen, for permitting us to use pictures of some leading physiologists appearing in his article and also for sending his photograph to be included. The authors are highly indebted to Dr Govindjee, Professor Emeritus, University of Illinois, Urbana-Champaign, USA, for sending us his research contributions as well as his photograph. Additionally, we are grateful to Professor R. C. Sachar, formerly of Delhi University for sending us a write-up about his research contributions. Our sincere thanks are also for Professors A. K. Bhatnagar, formerly of Delhi University; Professors R. R. Singh and Nirmala Nautiyal of Lucknow University; Dr H. N. Krishnamoorthy, formerly of HAU, Hisar; Dr Alok K. Moitra, Executive Secretary, INSA, Delhi, for arranging pictures of some Indian physiologists. The authors express their gratitude to Dr P. S. Deshmukh (Emeritus Scientist), Dr M. C. Ghildyal, Professor Raj Kumar Sairam, Professor G. S. Sirohi and Dr Ajay Arora of the Division of Plant Physiology, IARI, New Delhi, for their help and cooperation.

Teaching Plant Physiology together at the college for over 25 years has strengthened our ties at a familial level and we both are indebted to our families, especially Urmil Kochhar and Jasbir Singh Gujral, without whose support and continued interest this book would not have materialised. We value our association with our former colleagues Dr G. N. Dixit and Dr S. Bala Bawa with whom we shared the joy of teaching plant physiology at the college.

Our special thanks are to Saurabh Kochhar, Monica Manchanda and Shalloo Chaudhary for their support in gathering information from multiple sources. Our unending gratitude

Preface to the First Edition xix

reaches out to Dr Inderdeep Kaur, Associate Professor at Khalsa College, for her many helpful suggestions from time to time. Special thanks are also to Dr Jaswinder Singh, Principal of Khalsa College, for his continued interest in our project. We are also thankful to S. K. Dass for his help in providing photographic images.

We wish to express our deep gratitude to the editorial and production team at the Cambridge University Press, India, for their courtesy, cooperation and technical guidance about details, and for their meticulous efforts in bringing out this edition well in time and in the best possible format.

We would highly appreciate receiving suggestions from our colleagues in India and overseas for the improvement of this new edition.

We wish to express our deep gratitude to Professor M. S. Swaminathan, FRS, World Food Laureate; and Founder Chairman and Mentor of the M. S. Swaminathan Research Foundation, Chennai, India, not only for his kindness in writing the Foreword to the book but also for his great encouragement and continued interest in this project. We are also thankful to his Foundation for providing us pictures of *Rhizophora mucronata* – an important component of the mangrove ecosystem.

We wish to offer our gratitude to (Late) Professor S. C. Maheshwari, well-known for his pioneering work on haploid from pollen, for having permitted us earlier to use pictures of some leading physiologists, from his article and also for sending us his own photograph for inclusion. The authors are highly indebted to Dr Govindjee, Professor Emeritus, University of Illinois, Urbana-Champaign, USA, for sending us his research contributions as well as his photograph for insertion. We are further grateful to him for having permitted us to use a cartoon, from the book The Quantum Requirements Controversy between Warburg and the Midwest-gang which he had jointly authored with Nickelsen. We also wish to express our sincere thanks to Professor Jaswinder Singh of the Plant Science Department, McGill University, Macdonald Campus, Quebec, Canada for his many helpful suggestions. We are indeed grateful to Professor R. C. Sachar, formerly of Delhi University for sending us his piece about his research contributions. Our sincere thanks are also due to Professors R. R. Singh and Nirmala Nautiyal of Lucknow University; Dr H. N. Krishnamoorthy, formerly of HAU, Hisar, Haryana; and Dr Alok K. Moitra, Executive Secretary, INSA, Delhi for having arranged some pictures of Indian Physiologists. The authors express their gratitude to Dr P. S. Deshmukh (Emeritus Scientist), Dr M. C. Ghildyal, Professor Sai Ram, Professor G. S. Sirohi and Dr Ajay Arora of the Division of Plant Physiology, IARI, New Delhi for their help and cooperation.

Teaching Plant Physiology together at the college for over twenty-five years has strengthened our ties at the family level and we are indeed indebted to our families especially Mrs Urmil Kochhar and Mr Jasbir Singh Gujral, without whose support and constant encouragement, the book would not have materialised. Sincere thanks are also due to our children for their deep interest, support and genuine concern about its Cambridge edition. A special word of appreciation goes to our beloved grandchildren as they waited with keen anticipation over the years to see the book in print.

xxii Acknowledgements

We indeed value our association with our former colleagues Dr G. N. Dixit and Dr (Mrs) S. Bala Bawa with whom we shared the joy of teaching plant physiology at college. Our thanks are due to Drs Inderdeep Kaur and Surinder Kaur, Associate Professor, Khalsa College, University of Delhi for their many helpful suggestions from time to time. Our special thanks are due to Dr Jaswinder Singh, Principal of Khalsa College for his continued interest in our project. Sincere gratitude is due to Saurabh Kochhar for his support in gathering information from multiple sources and his assistance with computer applications.

We wish to express our deep gratitude to the editorial and production teams of the Cambridge University Press, India, for their courtesy, cooperation and technical guidance, their attention to details, and for their meticulous efforts in bringing out this edition well in time and in the best possible format.

We would indeed appreciate receiving suggestions from our fellow botanists in India and overseas for the further improvement of this second edition.

Photo credits

The authors express their gratitude to the following for having provided us some of the high resolution coloured images used in this book: Dr Surendra Singh, former Associate Professor at MSJ Government Post Graduate College, Bharatpur, Rajasthan; Dr Prabir Ranjan Sur, former Scientist at Botanical Survey of India, Kolkata, West Bengal; Dr (Mrs) C. T. Chandra Lekha, Devamatha College Kuravilangad, Kottayam, Kerala; Dr B. K. Mukherjee, IIT, Kharagpur, a well-known Cosmos Healer and Author; Mr Thilak Makkiseril, Seafood Technologist, Cochin, Kerala; Dr Manju Choudhary, Associate Professor, Government College Jhunjhunu, Rajasthan; Mr Sushain Babu, Shree Haripal Shastri Smarak Mahavidyalaya, PheenaBijnor, Rohilkhand, Uttar Pradesh; Mr Sandesh Parashar, former Principal, Panchayat Training Centre, Kota, Rajasthan; Dr Md. Ahsan Habib, Assistant Professor and Head Department of Biology, Mohammadpur Preparatory School and College, Dhaka, Bangladesh; Mr Rabiul Hasan Dollar, Chapainawabganj, Bangladesh; Mr B. K. Basavaraj, Forest Department, Mangalore, Karnataka; Dr Preeti V. Phate, Assistant Professor and Head, Department of Botany, JSM College, Alibag, Raigad, Maharashtra; Miss Madhumati Yashwant Shinde, PG Department of Botany, Dattajirao Kadam Arts, Science and Commerce College, Ichalkaranji, Kolhapur, Maharashtra; Mrs Jyotirmayi Parija, Forest Officer, Government of Odisha; Mr Satya Prakash Mahapatra, Education Officer (Retd.), Government of India; Ms Christine Walters, Redwood National and State Parks (RNPS), Crescent City, California, USA; Mr Andrei Savitsky, Cherkassy, Ukraine; and Mr Bobby Verma, Government Brijindra College Faridkot, Punjab.

Delhi. S. L. Kochhar Sukhbir Kaur Gujral

Some Common Abbreviations used in the Text

2,4,5-T
2,4,5-Trichlorophenoxyacetic acid
2,4-D
4-Chlorophenoxyacetic acid
4-CPA
4-Chlorophenoxyacetic acid

ABA Abscisic acid

ABC proteins ATP binding cassette proteins

ACC 1-aminocyclopropane-1-carboxylic acid

ACO ACC oxidase
ACP Acyl carrier protein
ACS ACC synthase

ADH Alcohol dehydrogenase
ATP Adenosine triphosphate

BRS Brassinosteroids
BSA Bovine serum albumin
CAC Citric acid cycle

CAM Crassulacean acid metabolism cAMP Cyclic adenosine monophosphate

COP gene CONSTITUTIVE PHOTOMORPHOGENESIS gene

DAG Diacyl glycerol

DCPIP 2,6-Dichlorophenol indophenol DCMU 3,4-dichlorophenyl-1,1-dimethyl urea

DNP 2,4-Dinitrophenol

DRE Dehydration response elements

EC Enzyme commission

EDTA Ethylenediaminetetraacetic acid ETS Electron transport system

EXPA α -expansins

FCR Folin-Ciocalteau reagent

Fd Ferredoxin

xxiv Some Common Abbreviations used in the Text

FLC gene FLOWERING LOCUS C gene FT protein FLOWERING LOCUS T protein

GA Gibberellin
GA₃ Gibberellic acid
GAREs GA response elements
GDH Glutamate dehydrogenase
GLC Gas-liquid chromatography

GOGAT Glutamate synthase or glutamine-2-oxoglutarate-amino transferase

GPP Gross primary productivity
GS Glutamine synthetase
HIRs High irradiance responses

HPLC High performance (pressure) liquid chromatography

Hpt protein Histidine phosphotransfer protein

HSF Heat shock factor
HSPs Heat shock proteins
IAA Indole-3-acetic acid
IBA Indole-3-butyric acid
IP₃ 1,4,5-triphosphate inositol
IPP Iso-pentenyl pyrophosphate

LAI Leaf area index
LHb Leghaemoglobin
LDH Lactate dehydrogenase

LEA Proteins Late embryogenesis abundant proteins

LFRs Low fluence responses
LHC Light-harvesting complex
NAA Naphthalene acetic acid

NAD Nicotinamide adenine dinucleotide

NADH Nicotinamide adenine dinucleotide (reduced) NADP Nicotinamide adenine dinucleotide phosphate

NAM gene NO APICAL MERISTEM gene

Nif genes Nitrogen fixing genes NiR Nitrite reductse

NEDD N-(1-naphthyl) ethylenediamine dihydrochloride

Nod genes Nodulation genes

NPA N-1-naphthylphthalamic acid

NR Nitrate reductase
OAA Oxaloacetate
OD Optical density

OEC Oxygen-evolving complex

OPCC Oxidative pentose phosphate cycle
PAGE Polyacrylamide gel electrophoresis
PAR Photosynthetically active radiation

PC Plastocyanin

PCD Programmed cell death

Some Common Abbreviations used in the Text xxv

PCK PEP carboxykinase

PCMBS p-chloromercuribenzene sulphonic acid PCR Photosynthetic carbon reduction cycle

PEP Phosphoenolpyruvate

PEPcase Phosphoenolpyruvate carboxylase (PEP carboxylase)

PFK Phosphofructokinase pmf Proton motive force PQ Plastoquinone

PR-proteins Pathogenesis-related proteins

PS Photosystem

Q₁₀ Temperature coefficient RCF Relative centrifugal force

R_f Relative front
RIA Radio immunoassay
rpm Revolutions per minute
RQ Respiratory quotient

Rubisco Ribulose-1,5-bisphosphate carboxylase/oxygenase

RUP proteins REPRESSOR OF UV-B PHOTOMORPHOGENESIS proteins

SAGs Senescence associated genes SAM S-adenosyl methionine SAR Systemic acquired resistance SDS Sodium dodecyl sulphate

SPAC Soil–plant–air continuum (Soil–plant–atmosphere continuum)

TIBA 2,3,5-Triiodobenzoic acid
TLC Thin-layer chromatography
TPP Thiamine pyrophosphate
UVR8 Ultraviolet resistance 8

VAM Vesicular-arbuscular mycorrhiza VLFRs Very low fluence responses

ZTL Zeitlupe

% per cent
A Absorbance
Å Angstrom
atm Atmosphere
°C Degree Celsius

cal Calorie
cm Centimeter
D Dalton

[E] Enzyme concentration

E Extinction

E'° Redox potential

emf Electromotive force

g Gram h Hour

ln Logarithm to the base e

K Kelvin
kcal Kilocalorie
kD Kilodalton
kg Kilogram
Kj Kilojoules

Km Michaelis-Menten constant

L Litre

log Logarithm to the base 10 m Molal (concentration) M Molar (concentration)

min Minute ml Millilitre mm Millimeter

Abbreviations for Units iiivxx

N Normal (concentration)

nm Nanometer ppm Parts per million Gas constant R

Second

Substrate concentration [S]

S Svedberg unit

Τ Absolute temperature in Kelvin

V Volt