Contents

Preface ix

1. Introduction 1
 Proofs 5
 Website 5

2. Finitely Many States and Times 6
 The Explicit Model 6
 The Questions Addressed 8
 What Sort of Consumers? 9
 Viability \iff No Free Lunches \iff Pricing Kernel \iff
 Equivalent Martingale Measure 13
 Two Generalizations 18
 Two Examples 20
 Which Contingent Claims Can Be Synthesized? 23
 Arbitrage Bounds on the Price of Claims 24
 Bibliographic Notes 28

3. Continuous Time and the Black–Scholes–Merton (BSM) Model 29
 The (Limited) Scope of This Chapter 29
 The BSM Model 30
 Doubling Strategies 31
 Simple Trading Strategies 33
 Föllmer’s Example 37
 Generalizing Proposition 2.1: The Fundamental Theorem of Asset Pricing (FTAP) 38
 “Arbitrage Pricing” by Viability Arguments 42
 “Arbitrage Pricing” by Synthesis 44
 The Financial-Gains Integral 48
 In the BSM Model, with Continuous Trading, Markets Are Complete 51
 Editorial: Continuous-Time Trading as an Idealization 52
 Bibliographic Notes 54

4. BSM as an Idealization of Binomial-Random-Walk Economies 56
 One State Space 57
 $C[0, 1]$ versus $D[0, 1]$ 58
Table of Contents

One State Space, Continued

Generalizing Cox, Ross, and Rubinstein

Weak Convergence in General

Donsker’s Theorem

Proof of Proposition 4.1

Unbounded and Discontinuous Contingent Claims

Convergence of Solutions to the Consumer’s Problem: Formulation

Existence and Characterization of Solutions for Discrete-Time Economies

Existence and Characterization of Solutions for the BSM Economy

Convergence of Solutions to the Consumer’s Problem, Completed

Concerning the Assumption in Proposition 4.4 that the Bounds (4.2) Hold

Other Binomial Random Walks

So Is BSM a Good Idealization of the Binomial-Random-Walk Economies?

Bibliographic Remarks

5. General Random-Walk Models

The Esscher Transform and emm

The Trinomial Random Walk and Near Synthesis of the Call Option

Asymptotic Synthesis of Contingent Claims for General Random-Walk Economies

Proof Stage I: A Very Special Case

Proof Stage II: A Less Special Case, Begun

The Skorohod Representation Theorem

Stage II Completed

Proof Stage III: General Contingent Claims in Three Steps

Concerning the Proof of Proposition 5.1b and the Boundedness of the Support of ζ

Unbounded Claims

What’s Going on Here? “Arbitrage,” as Defined in the Literature, Asks Too Much

Arbitrageurs versus Consumers

Convergence of Optimal Consumption, 1: Bounded Support

Convergence of Optimal Consumption, 2: Discrete Time Is Asymptotically at Least as Good as Continuous Time
Contents

Convergence of Optimal Consumption, 3: Is Discrete Time Asymptotically No Better than Continuous Time? 137

Convergence of Optimal Consumption, 4: CRRA (and CARA) Utility 139

Chapter 4 versus Chapter 5 146

The Bottom Line? 146

Bibliographic Notes 147

6. Barlow’s Example 148

Background: The Cox–Ross–Rubinstein Models 149

Barlow’s Example 152

Variations on Barlow’s Example 155

Barlow with Consecutive Steps Combined 155

A Two-by-Two Summary Table 156

7. The Pötzelberger–Schlumprecht Example and Asymptotic Arbitrage 158

The Example 158

Asymptotic Arbitrage – the Philosophy 163

Asymptotic Arbitrage – the Theory 167

No Asymptotic Arbitrage – the Consequences 169

Appendix 177

Two Equivalent Ways to Represent a Field of Events for a Finite State Space 177

Proof of Proposition 4.2a 178

Proof of Proposition 4.4 183

Some Calculations for the General Binomial Model 186

(Asymptotic) Solutions of the Consumer’s Expected-Utility Maximization Problem with CARA Utility 188

References 194

Author Index 199

Subject Index 200