

Phase Transitions in Materials

Second Edition

The new edition of this popular textbook provides a fundamental approach to phase transformations and thermodynamics of materials. Explanations are emphasized at the level of atoms and electrons, and it comprehensively covers the classical topics from classical metallurgy to nanoscience and magnetic phase transitions. The book has three parts, covering the fundamentals of phase transformations, the origins of the Gibbs free energy, and the major phase transformations in materials science. A fourth part on advanced topics is available online. Much of the content from the first edition has been expanded, notably precipitation transformations in solids, heterogeneous nucleation, and energy, entropy, and pressure. Three new chapters have been added to cover interactions within microstructures, surfaces, and solidification. Containing over 170 end-of-chapter problems, it is a valuable companion to graduate students and researchers in materials science, engineering, and applied physics.

Brent Fultz is the Rawn Professor of Materials Science and Applied Physics at the California Institute of Technology. His awards include the 2016 William Hume-Rothery Award of The Minerals, Metals and Materials Society (TMS). He is a fellow of the American Physical Society (APS), TMS, and the Neutron Scattering Society of America (NSSA).

Phase Transitions in Materials

Second Edition

BRENT FULTZ

California Institute of Technology

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India
79 Anson Road, #06–04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781108485784 DOI: 10.1017/9781108641449

> © Brent Fultz 2014 © Cambridge University Press 2020

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2014 Second edition 2020

Printed in the United Kingdom by TJ International Ltd, Padstow Cornwall

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data
Names: Fultz, B. (Brent), author.
Title: Phase transitions in materials / Brent Fultz.
Description: Second edition. | Cambridge; New York, NY: Cambridge

University Press, 2020. | Includes bibliographical references and index. Identifiers: LCCN 2019043465 (print) | LCCN 2019043466 (ebook) | ISBN 9781108485784 (hardback) | ISBN 9781108641449 (epub) Subjects: LCSH: Phase transformations (Statistical physics)—Textbooks. |

Thermodynamics—Textbooks. | Materials—Thermal properties—Textbooks. |
Statistical mechanics—Textbooks.

Classification: LCC QC175.16.P5 F86 2020 (print) | LCC QC175.16.P5 (ebook) | DDC 530.4/74–dc23 LC record available at https://lccn.loc.gov/2019043465

LC record available at https://lccn.loc.gov/2019043465 LC ebook record available at https://lccn.loc.gov/2019043466

ISBN 978-1-108-48578-4 Hardback

Additional resources for this publication at www.cambridge.org/fultz2

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

P_{i}	reface		page xi
N	otation		xiv
		Part I Basic Thermodynamics and Kinetics of Phase Transformations	1
1	Introd	uction	3
	1.1	What Is a Phase Transition?	3
	1.2	Atoms and Materials	5
	1.3	Pure Elements	6
	1.4	Alloys: Unmixing and Ordering	10
	1.5	What Is a Phase Transformation?	12
	1.6	Brief Review of Thermodynamics and Kinetics	15
	Probl	ems	19
2	Tempe	erature—Composition Phase Diagrams	21
	2.1	Intuition and Expectations about Alloy Thermodynamics	21
	2.2	Free Energy Curves, Solute Conservation, and the Lever Rule	27
	2.3	Common Tangent Construction	29
	2.4	Continuous Solid Solubility Phase Diagram	32
	2.5	Eutectic and Peritectic Phase Diagrams	34
	2.6	Ternary Phase Diagrams	37
	2.7	Free Energy of a Solid Solution	39
	2.8	Unmixing Phase Diagram	44
	2.9	Order–Disorder Phase Diagram	47
	2.10	Alloy Phase Diagrams	53
	Probl	ems	55
3	Diffus	on	59
	3.1	Processes of Atom Movements in Crystals	60
	3.2	The Diffusion Equation	64
	3.3	Gaussian and Error Functions in One Dimension	68
	3.4	Fourier Series Solutions to the Diffusion Equation	73
	3.5	Bessel Functions and Other Special Function Solutions	78
	Probl	ems	81

٧

vi Contents

,	Nudestin	0.2
4	Nucleation 4.1 Nucleation Phenomena and Terminology	83 83
	4.1 Nucleation Phenomena and Terminology4.2 Critical Nucleus	85
	4.3 Heterogeneous Nucleation	89
	4.4 Free Energy Curves and Nucleation	92
	4.5 The Nucleation Rate	95
	4.6 Time-Dependent Nucleation	103
	4.7 Nucleation in Multicomponent Systems	105
	Problems	107
_		400
5		109
	5.1 Nonequilibrium Processing of Materials	109
	5.2 Alloy Solidification with Suppressed Diffusion in the Solid5.3 Alloy Solidification with Suppressed Diffusion in Both	112
	Solid and Liquid	118
	5.4 Time, Temperature, and Transformation	120
	5.5 Glasses and Liquids	122
	5.6 Kinetics near Equilibrium	125
	Problems	129
	Part II The Atomic Origins of Thermodynamics and Kinet	ics 131
6	5 Energy	133
٠	6.1 Atomic Schrödinger Equations and Formalism	133
	6.2 Molecular Orbital Theory of Diatomic Molecules	135
	6.3 Electronic Bands and the Tight-Binding Model	141
	6.4 Free and Nearly-Free Electrons	145
	6.5 Some Electronic Structures of Materials	149
	6.6 Elastic Constants and the Interatomic Potential	155
	6.7 Linear Elasticity	159
	6.8 Misfitting Particle	163
	Problems	168
7	Entropy	171
•	7.1 Counting and Entropy	171
	7.2 Short-Range Order and the Pair Approximation	176
	7.3 Materials Structures and Properties Described by Clusters	179
	7.4 Concept of Vibrational Entropy	184
	7.5 Phonon Thermodynamics	186
	7.6 Bond Proportion Model	189
	7.7 Bond-Stiffness-versus-Bond-Length Model	197
	Problems	200

vii Contents

R	Pressure	204
Ü	8.1 Materials under Pressure at Low Temperatures	204
	8.2 Thermal Pressure, a Step beyond the Harmonic Model	209
	8.3 Free Energies and Phase Boundaries under Pressure	211
	8.4 Chemical Bonding and Antibonding under Pressure	212
	8.5 Pressure-Driven Phase Transitions	215
	8.6 Activation Volume	219
	Problems	220
9	Interactions in Microstructures and Constrained Equilibrium	223
	9.1 Solid-State Amorphization	224
	9.2 Self-Trapping	225
	9.3 Thermodynamics of Complex Materials	228
	9.4 Partitioning of Energy in Polycrystals and Single Crystals	231
	9.5 Coherency Strains in Chemical Unmixing	233
	9.6 Coupling between Unmixing Processes	236
	9.7 Factoring the Partition Function	243
	Problems	248
10	Atom Movements with the Vacancy Mechanism	250
	10.1 Random Walk and Correlations	250
	10.2 Correlation Factors for Atoms and Vacancies in Alloys	256
	10.3 Phenomena in Alloy Diffusion	260
	10.4 Diffusion in a Potential Gradient	268
	10.5 Diffusion in a Temperature Gradient	272
	10.6 Nonthermodynamic Equilibrium in Driven Systems	274
	10.7 Vineyard's Theory of Diffusion	277
	Problems	283
	Part III Types of Phase Transformations	287
11	Thermodynamics and Phase Transitions at Surfaces	289
	11.1 Surface Structure	289
	11.2 Thermodynamic Roughening Transition	292
	11.3 Surface Structure and Kinetics	294
	11.4 Energies of Grain Boundaries and Interfaces	297
	11.5 Anisotropic Surface Energy	303
	11.6 Reactions at Surfaces	306
	11.7 Gas Adsorption	311
	Problems	313
12	Melting	318
	12.1 Structure and Thermodynamics of Melting	318
	12.2 Chemical Trends of Melting	321

viii Contents

	12.3	Free Energy of a Solid	323
	12.4	Entropy of a Liquid	329
	12.5	Thermodynamic Condition for the Melting Temperature	331
	12.6	Glass Transition	333
	12.7	Two Dimensions	338
	Prob	lems	340
13	Solidi	fication	342
	13.1	Solidification Microstructures	343
	13.2	Alloy Solidification with Suppressed Diffusion in	
		the Liquid	348
	13.3	Constitutional Supercooling	349
	13.4	Cellular and Dendritic Microstructures	353
	13.5	Dendrite Growth with Solute Segregation	358
	13.6	Surface Energy	360
	13.7	Developments in Solidification Science	365
	Prob	lems	370
14	Phase	Transformations with Interfaces: 1. Microstructure	373
	14.1	Guinier-Preston Zones and Precipitation Sequences	373
	14.2	Precipitation at Grain Boundaries and Defects	376
	14.3	The Eutectoid Transformation and Pearlite	380
	14.4	Heat Treatments of Steel	385
	14.5	The Kolmogorov–Johnson–Mehl–Avrami Growth Equation	389
	14.6	Coarsening	392
	Prob	lems	396
15	Phase	Transformations with Interfaces: 2. Energetics and Kinetics	398
	15.1	Interface Thermodynamics and Kinetics	398
	15.2	Atomistic Model of Interface Motion	403
	15.3	Local Nonequilibrium at Fast Interfaces	406
	15.4	Elastic Energy and Shape of Growing Plate-Like Precipitates	412
	15.5	Elastic Energy and Solute Atoms	414
	Prob	lems	422
16	Spino	dal Decomposition	424
	16.1	Concentration Fluctuations and the Free Energy of Solution	424
	16.2	A Square Gradient Term in the Free Energy	426
	16.3	Constrained Minimization of the Free Energy	431
		The Diffusion Equation	434
	16.5	Effects of Elastic Energy on Spinodal Decomposition	437
	Prob	lems	440

ix Contents

17	Phase	Field Theory	441
	17.1	Spatial Distribution of Phases and Interfaces	442
	17.2	Order Parameters as Field Quantities	444
	17.3	Domain Boundary Structure	448
	17.4	Domain Boundary Kinetics	452
	Probl	ems	456
18	Metho	d of Concentration Waves and Chemical Ordering	458
	18.1	Structure in Real Space and Reciprocal Space	458
	18.2	Symmetry and the Star	464
	18.3	The Free Energy in k-Space with Concentration Waves	467
	18.4	Symmetry Invariance of Free Energy and Landau-Lifshitz Rule for	
		Second-Order Phase Transitions	470
	18.5	Thermodynamics of Ordering in the Mean Field Approximation with	
		Long-Range Interactions	474
	Probl	ems	479
19	Diffus	ionless Transformations	482
		Dislocations, Mechanisms, and Twinning	482
		Martensite	488
	19.3	Landau Theory of Displacive Phase Transitions	496
		Crystal Instabilities and Phonons	505
	Probl	•	509
20	Therm	odynamics of Nanomaterials	511
		Energies of Atoms at Grain Boundaries in Nanocrystals	511
		Gibbs—Thomson Effect	513
		Atomic Structures of Nanocrystals	516
		Electron Energies in Nanomaterials	520
		Entropy of Nanomaterials	524
		Magnetic Nanoparticles	529
	Probl		531
21	Magn	etic and Electronic Phase Transitions	533
۷.	21.1	Overview of Magnetic and Electronic Phase Transitions	534
	21.1	Exchange Interactions	539
	21.3	Thermodynamics of Ferromagnetism	544
	21.4	Spin Waves	548
	21.5	Thermodynamics of Antiferromagnetism	551
	21.6	Dzyaloshinskii–Moriya Interactions and Skyrmions	553
		Thermodynamics of Ionic Crystals	557
			221

x Contents

21.8 Ferroelectric Transition21.9 DomainsProblems	559 561 563
Further Reading References Index	565 568 579
Online Chapters	
Part IV Advanced Topics	589
22 Low-Temperature Analysis of Phase Boundaries	591
23 Statistical Kinetics of Ordering Transformations	604
24 Elastic Energy of Solid Precipitates	622
25 Diffusion, Dissipation, and Inelastic Scattering	631
26 Vibrational Thermodynamics of Materials at High Temperatures	650
27 Cooperative Behavior near a Critical Temperature	677
28 Phase Transitions in Quantum Materials	692
Further Reading References	718 720

Preface

Content

This book explains the thermodynamics and kinetics of most of the important phase transitions in materials science. It is a textbook, so the emphasis is on explanations of phenomena rather than a scholarly assessment of their origins. The goal is explanations that are concise, clear, and reasonably complete. The level and detail are appropriate for upper division undergraduate students and graduate students in materials science and materials physics. The book should also be useful for researchers who are not specialists in these fields. The book is organized for approximately sequential coverage in a graduate-level course. The four parts of the book serve different purposes, however, and should be approached differently.

Part I presents topics that all graduate students in materials science must know. After a general overview of phase transitions, temperature–composition phase diagrams are explained from classical thermodynamics and from the statistical mechanics of Ising lattices. Diffusion, equilibration, and nucleation are then covered, and general aspects of diffusion and nucleation are used with T-c phase diagrams to explain the rates of some phase transformations.

Part II addresses the origins of materials thermodynamics and kinetics at the level of atoms and electrons. Electronic and elastic energy are covered at the level needed in some of the later chapters. The physical origins of entropy (a topic that receives scant coverage in other texts) are presented in the context of phase transitions on Ising lattices. Effects of pressure, combined with temperature, are explained with a few concepts of chemical bonding and antibonding. The thermodynamics of real materials typically involves minimizing a free energy with multiple degrees of freedom, and Chapter 9 shows directions beyond one variable. Chapter 10 on kinetics emphasizes atom movements for diffusion in solids, especially features of atom—vacancy interchanges.

Part III is the longest. It describes important phase transformations in materials, with their underlying concepts. Topics include surface phenomena, melting, solidification, nucleation and growth in solids, spinodal decomposition, phase field theory, continuous ordering, martensitic transformations, phenomena in nanomaterials, and phase transitions involving electrons or spins. Many topics from metallurgy and ceramic engineering are

χi

¹ The author asks graduate students to explain some of the key concepts at a blackboard during their Ph.D. candidacy examinations.

xii Preface

covered, although the connection between processing and properties is less emphasized, allowing for a more concise presentation than in traditional texts.

The online Advanced Topics present modern topics that have proved their importance. These chapters are available online at doi:10.7907/05BY-QX43 and can be downloaded at no cost from https://www.library.caltech.edu. The chapters cover low- and high-temperature treatments of the partition function, nonequilibrium states in crystalline alloys, a *k*-space formulation of elastic energy, fluctuations and how they are measured, high-temperature thermodynamics, the renormalization group, scaling theory, and an introduction to quantum phase transitions. The topics are explained at a fundamental level, but unlike Parts I through III, for conciseness there are more omissions of methods and steps.

Many topics in phase transitions and related phenomena are not covered in this text. These include: polymer flow and dynamics including reptation, phase transitions in fluid systems including phenomena near the critical temperature, crystallographic symmetry in displacive transformations, and massive transformations. Also beyond the scope of the book are computational methods that are increasingly important for studies of phase transformations in materials, including: Monte Carlo methods, molecular dynamics methods (classical and quantum), and density functional theory with time or ensemble averages for materials at finite temperatures.

The field of phase transitions is huge, and continues to grow. This text is a snapshot of the field taken from the viewpoint of the author near the year 2020. Impressively, this field continues to offer a rich source of new ideas and results for both fundamental and applied research, and parts of it will look different in a decade or so. I expect, however, that the core will remain the same – the free energy of materials will be at the center, surrounded by issues of kinetics.

Teaching

I use this text in a course for Ph.D. students in both materials science and in applied physics at the California Institute of Technology. The 10-week course is offered in the third academic quarter as part of a one-year sequence. The first two quarters in this sequence cover thermodynamics and statistical mechanics, so the students are already familiar with using a partition function to obtain thermodynamic quantities. Familiarity with some concepts from solid-state physics and chemistry is certainly helpful, but the text develops many of the important concepts as needed.

In the one-quarter course at Caltech, I cover most topics in Parts I and II, moving in sequence through the chapters. Time limitations force a selection of topics from Part III and Advanced Topics. For example, I tend to cover Chapters 12, 16, 18, and parts of 14, 19, 20 (although sometimes these later parts are replaced by an advanced chapter, such as 25). It is unrealistic to cover the entire content of the book in one course, even with a 15-week semester. An instructor will use discretion in selecting topics for the second half of his or her course.

xiii Preface

The problems at the end of each chapter were used for weekly student assignments, and this helped to refine their wording and content. The majority of these problems are based on concepts explained in the text, sometimes filling in explanations or extending the analyses. Other problems, less popular with students, develop new concepts not described in the chapter. These problems usually include longer explanations and hints that may be worth reading even without working the problem. None of the problems are intended to be particularly difficult, and some can be answered quickly with one main idea. For homework, I assign five or six of these problems every week during the term. In their reviews of the course, most students reportedly spend 6–8 hours per week outside the classroom completing these problem sets and reading the text. An online solutions manual is available to course instructors whose identity can be verified. Please ask me for further information.

Acknowledgments

I thank J.J. Hoyt for collaborating with me on a book chapter about phase equilibria and phase transformations that prompted me to get started on the first edition of this book. The development of the topic of vibrational entropy would not have been possible without the contributions of my junior collaborators at Caltech, especially L. Anthony, L.J. Nagel, H.N. Frase, M.E. Manley, J.Y.Y. Lin, T.L. Swan-Wood, A.B. Papandrew, O. Delaire, M.S. Lucas, M.G. Kresch, M.L. Winterrose, J. Purewal, C.W. Li, T. Lan, H.L. Smith, L. Mauger, S.J. Tracy, D.S. Kim, and N. Weadock. Several of them are taking this field into new directions. Important ideas have come from stimulating conversations over the years with O. Hellman, A. van de Walle, V. Ozolins, G. Ceder, M. Asta, L.-Q. Chen, D.D. Johnson, E.E. Alp, R. Hemley, J. Neugebauer, B. Grabowski, M. Sluiter, F. Körmann, D. de Fontaine, A.G. Khachaturyan, I. Abrikosov, A. Zunger, P. Rez, K. Samwer, and W.L. Johnson.

Brent Fultz

Notation

a lattice parameter

A area

Avector potential of magnetic fieldA-atomgeneric chemical elementAPDBantiphase domain boundary

lpha coefficient of linear thermal expansion lpha critical exponent for heat capacity

 α -phase generic phase

 α -sublattice a lattice of like atoms within an ordered structure

 α_i root of Bessel function

 α^2 electron—phonon coupling factor

 \vec{b} Burgers vector of dislocation

 $b_{\rm A}$ coherent neutron scattering length of isotope A

 $b(\vec{k})$ Fourier transform of pairwise energy for two concentration waves

 \vec{B} bulk modulus magnetic field

B-atom generic chemical element $B(\vec{R})$ pairwise energy between atoms

 β coefficient of volume thermal expansion

 β critical exponent for density

 β -phase generic phase

 β -sublattice a lattice of like atoms within an ordered structure

c chemical composition (atomic fraction)

 c_1^* chemical composition of liquid at liquid–solid interface c_s^* chemical composition of solid at liquid–solid interface

c speed of sound or light c_A concentration of A-atoms

c_A weight of atomic wavefunction on atom A in a molecular wavefunction

 $C_{\rm el}$ electronic heat capacity

 $C_P(T)$ heat capacity at constant pressure $C_V(T)$ heat capacity at constant volume

 C_{ij} , C_{ijlm} elastic constant

xiv

xv Notation

D	diffusion coefficient
D	deformation potential
$D_{ m h}$	thermal (heat) diffusion coefficient
$ec{D}$	electric polarization
D_0	prefactor for exponential form of diffusion coefficient
$\tilde{D}(c)$	interdiffusion coefficient
$D(c)$ $\underline{D}(\vec{k}), D_{ij}(\vec{k})$	dynamical matrix, element of
δ	fractional change in volume (of misfitting sphere)
$\Delta G_{ m V}$	change in Gibbs free energy per unit volume
ΔG^*	activation barrier for nucleation
$\Delta(\vec{r})$	static wave of chemical concentration
e	charge of electron
e_{A}	energy of an A-atom on a crystal site
$e_{ m AB}$	energy of a pair (bond) between an A- and a B-atom
$e_{\rm R}, e_{\rm W}$	energy of two atoms, A and B, on their right or wrong sublattices
$\vec{e}_{\kappa j}(\vec{k})$	polarization for atom of basis index κ in phonon of \vec{k} in branch j
$\operatorname{erf}(z)$	error function
$egin{array}{c} E \ ec{E} \end{array}$	energy, thermodynamic energy
	electric field
$E_{ m el}$	elastic energy
$E_{ m elec}$	electrostatic energy
\mathcal{E}	energy, energy of phonon
ϵ	energy, energy of electron
ϵ	fractional difference in T from T_c
$\epsilon_{ ext{F}}$	Fermi energy
$\epsilon_j, \epsilon_{ij}$	strain
η	fractional change of lattice parameter with composition
η	order parameter
f	correlation factor
f_{α}	(atomic) fraction of α -phase
f_j	interaction free energy
f(c)	free energy per unit volume
\overline{F}	Helmholtz free energy
$\mathcal F$	force
$F_{\xi}(c,T)$	free energy for phase ξ with composition c at temperature T
q(s)	phonon density of states
g(arepsilon)	reciprocal lattice vector
\rightarrow	-
$\operatorname{\mathbf{grad}}(c)$ or ∇c	gradient (of concentration)
G	Gibbs free energy
$G(\vec{r},t)$	Van Hove space-time correlation function

> χvi **Notation** temperature gradient dT/dx \mathcal{G} coefficient for linear electronic heat capacity vs. T γ Grüneisen parameter γ Grüneisen parameter for phonon mode *j* γ_i shear strain γ_{xy} Γ atomic jump frequency Γ point at origin of reciprocal lattice h bond integral ħ Planck constant divided by 2π HHamiltonian \vec{H} magnetic field flux $J_0(x), J_1(x)$ Bessel functions of zero and first order J_n number of clusters per unit time that change from n to n + 1 $J_{
> m ss}$ steady-state flux in number space of cluster sizes $J_{
> m hs}, J_{
> m hl}$ heat flux in solid and liquid (1D) $ec{J}_{\mathsf{A}}$ flux of A-atoms $J(\vec{r}_1 - \vec{r}_i)$ magnetic exchange energy kpartitioning ratio $k = c_s/c_1$ \vec{k} wavevector Boltzmann constant $k_{\rm B}$ coefficient for square gradient energy κ Ginzburg-Landau parameter κ L latent heat L long-range order parameter Langevin function $L(\tau E_0/k_{\rm B}T)$ LHS left-hand side λ wavelength λ electron-phonon coupling parameter m slope of liquidus curve on phase diagram dT_1/dc m M mobility \vec{M} magnetization \mathcal{M} Mendeleev number chemical potential μ shear modulus μ $\vec{\mu}$ magnetic moment

xvii Notation

$n(\varepsilon_i,T)$	Planck distribution
N	number (of atoms)
$N^{lpha}_{ m A} \ N^{lphaeta}_{ m AB}$	number of A-atoms on α -sublattice (point variable)
$N_{ m AB}^{lphaeta}$	number of A–B pairs with A on α and B on β (pair variable)
N(k)	number of quantum states with wavevector less than k
N(t)	vector of number occupancies of states at time t
$\stackrel{\sim}{\nu}$	frequency
ν	Poisson ratio
ν	critical exponent for correlation length
	•
ω	angular frequency
Ω	number of states accessible to the system
Ω	atomic volume
Ω_j	configurations of a system with energy j
·	
p_i	probability of a state
$ec{p}$	momentum
$p_{ m A}$	partial pressure of vapor of element A
$p_{ m A}^{lpha}$	probability of A-atom on α -sublattice (point variable)
$p_{ m A}^lpha \ p_{ m AB}^{lphaeta}$	probability of A–B pair with A on α and B on β (pair variable)
P	pressure
P_{th}	thermal pressure (from expansion against a bulk modulus)
$\mathcal P$	Péclet number
$\Phi(r)$	interatomic, central-force potential
$\Phi_{\mathrm{M}}(r), \Phi_{\mathrm{L-J}}(r)$	Morse potential, Lennard-Jones potential
Φ_0	quantum of magnetic flux hc/2e
$egin{array}{c} Q & & & & & & & & & & & & & & & & & & $	compositional wavevector $2\pi/\lambda$
$Q_{\vec{z}}$	total electrostatic charge
Q	momentum transfer in scattering
Q	quality factor of damped harmonic oscillator
14	Bohr radius $r_{\rm B} = \hbar^2/(m_e e^2)$
$r_{ m B}$	Wigner–Seitz radius
$ec{r}_{ ext{WS}}$	position of unit cell
$ec{r}_k$	basis vector within unit cell
r _k R	
	number of right atoms on a sublattice of an ordered structure
$R(Q)$ R^*	growth rate for compositional wavevector Q critical radius for nucleation
$ec{R}$	
	position of atom center
\vec{R}_n	displacement after n jumps
R	number of atoms in unit cell
RHS	right-hand side

> xviii **Notation** density, e.g., [atoms cm⁻³] ρ $\rho(\epsilon)$ electronic density of states electronic density of states at the Fermi energy $\rho(\epsilon_{\rm F})$ \vec{S}_i electronic spin at site i S entropy S overlap integral S_{conf} configurational entropy $S_{\rm vib}$ vibrational entropy harmonic entropy S_{h} S_{qh} entropy contribution from quasiharmonicity S_{anh} entropy contribution from anharmonicity electronic entropy $S_{\rm el}$ entropy contribution from electron-phonon interaction $S_{\rm epi}$ $S_{\rm mag}$ magnetic entropy $S(\vec{Q},\omega)$ scattering function σ surface energy per unit area electrical conductivity σ spin number (± 1) σ energy per unit area of grain boundary $\sigma_{\rm gb}$ stress σ_{ij} time Ttemperature $T_{\rm c}$ critical temperature $T_{\rm C}$ Curie temperature $T_{\rm m}$ melting temperature $T_{\rm N}$ Néel temperature T_1, T_2, \ldots sequence of temperatures such that $T_2 > T_1$ \vec{T} translation vector of real space lattice characteristic time (e.g., for diffusion) τ $\vec{\tau}$ electrostatic dipole moment $\theta(\vec{r})$ Heaviside function, 1 in the region, 0 outside $\theta(\vec{r},t)$ phase of wavefunction in space and time Θ_{D} Debye temperature $\vec{u}(x, y, z)$ displacement vector difference in chemical preferences of A- and B-atoms $U = (e_{AA} -$ U $e_{\rm BB}$)/4VUCoulomb energy penalty for placing a second electron on a site in Hubbard model Υ_i Grüneisen parameter for energy of electronic state j

xix Notation

\vec{v}	velocity
V	interchange energy $V = (e_{AA} + e_{BB} - 2e_{AB})/4$
V	volume
$V(\vec{r})$	potential energy
$V_{ m Q}$	quantum volume, related to cube of de Broglie wavelength
v_0	volume per atom
W	number of wrong atoms on a sublattice of an ordered structure
W_{ij}	transition rate from state j to state i
$W^{\uparrow}_{eta A lpha}$	rate of increase of LRO parameter by jump of A from β - to α -
	sublattice
$\underset{\approx}{W}(\Delta t)$	transition matrix for time interval Δt
ξ ξ	correlation function
ξ	length
$\{\chi_i\}$	reaction coordinates
Χ	susceptibility
Y	Young's modulus
$\psi(\vec{r})$	wavefunction
	1 1 61
Z	coordination number of lattice
z –	partition function of subsystem
Z	partition function
${\mathcal Z}$	Zeldovich factor

