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1 INTRODUCTION

1.1 MULTIBODY SYSTEMS

The primary purpose of this book is to develop methods for the dynamic analysis

of multibody systems (MBS) that consist of interconnected rigid and deformable

components. In that sense, the objective may be considered as a generalization of

methods of structural and rigid body analysis. Many mechanical and structural

systems such as vehicles, space structures, robotics, mechanisms, and aircraft consist

of interconnected components that undergo large translational and rotational displace-

ments. Figure 1.1 shows examples of such systems that can be modeled as multibody

systems. In general, a multibody system is defined to be a collection of subsystems

called bodies, components, or substructures. The motion of the subsystems is kin-

ematically constrained because of different types of joints, and each subsystem or

component may undergo large translations and rotational displacements.

Basic to any presentation of MBS mechanics is the understanding of the motion

of subsystems (bodies or components). The motion of material bodies formed the

subject of some of the earliest researches pursued in three different fields, namely,

rigid body mechanics, structural mechanics, and continuum mechanics. The term

rigid body implies that the deformation of the body under consideration is assumed

small such that the body deformation has no effect on the gross body motion. Hence,

for a rigid body, the distance between any two of its particles remains constant at all

times and all configurations. The motion of a rigid body in space can be completely

described by using six generalized coordinates. However, the resulting mathematical

model in general is highly nonlinear because of the large body rotation. On the other

hand, the term structural mechanics has come into wide use to denote the branch of

study in which the deformation is the main concern. Large body rotations are not

allowed, thus resulting in inertia-invariant structures. In many applications, however,

a large number of elastic coordinates have to be included in the mathematical model

in order to accurately describe the body deformation. From the study of these two
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subjects, rigid body and structural mechanics, there has evolved the vast field known

as continuum mechanics, wherein the general body motion is considered, resulting in

a mathematical model that has the disadvantages of the previous cases, mainly

nonlinearity and large dimensionality. This constitutes many computational prob-

lems that will be addressed in subsequent chapters.

In recent years, greater emphasis has been placed on the design of high-speed,

lightweight, precision systems. Generally these systems incorporate various types

of driving, sensing, and controlling devices working together to achieve specified

performance requirements under different loading conditions. The design and per-

formance analysis of such systems can be greatly enhanced through transient

dynamic simulations, provided all significant effects can be incorporated into the

mathematical model. The need for a better design, in addition to the fact that many

mechanical and structural systems operate in hostile environments, has made neces-

sary the inclusion of many factors that have been ignored in the past. Systems such as

engines, robotics, machine tools, and space structures may operate at high speeds and

in high-temperature environments. The neglect of the deformation effect, for

example, when these systems are analyzed leads to a mathematical model that poorly

represents the actual system.

Consider, for instance, the Peaucellier mechanism shown in Fig. 1.1(b), which is

designed to generate a straight-line path. The geometry of this mechanism is such

that BC =BP =EC =EP and AB =AE. Points A, C, and P should always lie on a

Figure 1.1 Mechanical and structural systems.
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straight line passing through A. The mechanism always satisfies the condition AC�

AP = c, where c is a constant called the inversion constant. In case AD =CD, point C

must trace a circular arc and point P should follow an exact straight line. However,

this will not be the case when the deformation of the links is considered. If the

flexibility of links has to be considered in this specific example, the mechanism can

be modeled as a multibody system consisting of interconnected rigid and deformable

components, each of which may undergo finite rotations. The connectivity between

different components of this mechanism can be described by using revolute joints

(turning pairs). This mechanism and other examples shown in Fig. 1.1, which have

different numbers of bodies and different types of mechanical joints, are examples of

mechanical and structural systems that can be viewed as a multibody system shown

in the abstract drawing in Fig. 1.2. In this book, computer-based techniques for

the dynamic analysis of general multibody systems containing interconnected sets

of rigid and deformable bodies will be developed. To this end, methods for the

kinematics and dynamics of rigid and deformable bodies that experience large

translational and rotational displacements will be presented in the following chapters.

In the following sections of this chapter, however, some of the basic concepts that

will be subject of detailed analysis in the chapters that follow are briefly discussed.

1.2 REFERENCE FRAMES

The configuration of a multibody system can be described using measurable

quantities such as displacements, velocities, and accelerations. These are vector

quantities that have to be measured with respect to a proper frame of reference or

coordinate system. In this text, the term frame of reference, which can be represented

by three orthogonal axes that are rigidly connected at a point called the origin of this

reference, will be frequently used. Figure 1.3 shows a frame of reference that consists

of the three orthogonal axes X1, X2, and X3. A vector u in this coordinate system can

be defined by three components u1, u2, and u3, along the orthogonal axes X1, X2, and

X3, respectively. The vector u can then be written in terms of its components as

u = [u1 u2 u3]
T, or as u= u1i1 + u2i2+ u3i3, where i1, i2, and i3 are unit vectors along

Figure 1.2 Multibody systems.
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the orthogonal axes X1, X2, and X3, respectively. Without loss of generality, one can

assume i1= [1 0 0]T, i2 ¼ 0 1 0½ �T, and i3 ¼ 0 0 1½ �T.

Generally, in dealing with multibody systems two types of coordinate systems

are required. The first is a coordinate system that is fixed in time and represents a

unique standard for all bodies in the system. This coordinate system will be referred to

as global, or inertial frame of reference. In addition to this inertial frame of reference,

a body reference is assigned to each component in the system. This body reference

translates and rotates with the body; therefore, its location and orientation with respect

to the inertial frame change with time. Figure 1.4 shows a typical body, denoted as

body i in the multibody system. The coordinate system X1X2X3 is the global inertial

frame of reference, and the coordinate system Xi
1X

i
2X

i
3 is the body coordinate system.

Let i1, i2, and i3 be unit vectors along the axes X1, X2, and X3, respectively, and let

ii1, ii2, and ii3 be unit vectors along the body axes Xi
1, Xi

2, and Xi
3, respectively. The

unit vectors i1, i2, and i3 are fixed in time; that is, they have constant magnitude and

direction, while the unit vectors ii1, ii2, and ii3 have changeable orientations. A vector

u
i can be defined in the body coordinate system or the global coordinate system as

Figure 1.3 Reference frame.

Figure 1.4 Body coordinate system.
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ui ¼ �ui1i
i
1 þ �ui2i

i
2 þ �ui3i

i
3 ¼ ui1i1 þ ui2i2 þ ui3i3 (1.1)

where �ui1, �u
i
2, and �u

i
3 are the components of the vector ui in the local body coordinate

system; and ui1, u
i
2, and ui3 are the components of the same vector ui in the global

coordinate system. One, therefore, can have the two different representations of Eq. 1

for the same vector ui, one in terms of the body coordinates and the other in terms of

global coordinates. Since it is easier to define the vector in terms of the local body

coordinates, it is useful to have relationships between the local and global compon-

ents. Such relationships can be obtained by developing the transformation between

the local and global coordinate systems. For instance, consider the planar motion

of the body shown in Fig. 1.5. The coordinate system X1X2 represents the inertial

frame and Xi
1X

i
2 is the body coordinate system. Let i1 and i2 be unit vectors along the

X1 and X2 axes, respectively, and let ii1 and ii2 be unit vectors along the body axes

Xi
1 and Xi

2, respectively. The orientation of the body coordinate system with respect

to the global frame of reference is defined by the angle θi. Since ii1 is a unit vector,

its component along the X1 axis is cos θ
i, while its component along the X2 axis is

sin θi. Assuming i1 ¼ 1 0½ �T and i2 ¼ 0 1½ �T, one can then write the unit vectors

ii1 and ii2 in the global coordinate system as

ii1 ¼ cos θii1 þ sin θii2 ¼ cos θi sin θi
� �T

ii2 ¼ � sin θii1 þ cos θii2 ¼ � sin θi cos θi
� �T

)

(1.2)

The vector ui is defined in the body coordinate system as ui ¼ �ui1i
i
1 þ �ui2i

i
2, where �u

i
1

and �ui2 are the components of the vector ui in the body coordinate system. Using the

expressions for ii1 and ii2, one can write

ui ¼ ui1i1 þ ui2i2 ¼
ui1
ui2

� �

¼ �ui1i
i
1 þ �ui2i

i
2 ¼ ii1 ii2

� � �ui1
�ui2

� �

¼
cos θi � sin θi

sin θi cos θi

� �

�ui1
�ui2

� �

¼ Ai
�ui

(1.3)

Figure 1.5 Planar motion.
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where ui1 and ui2 are the components of the vector ui defined in the global coordinate

system and given, respectively, by ui1 ¼ �ui1 cos θ
i � �ui2 sin θ

i, and ui2 ¼ �ui1 sin θ
iþ

�ui2 cos θ
i. Equation 3 shows the algebraic relationships between the local and global

components in the planar analysis expressed in a matrix form as ui ¼ Ai
�ui, where

ui ¼ ui1 ui2
� �T

, �ui ¼ �ui1 �ui2
� �T

, and A
i is the planar transformation matrix defined as

Ai ¼
cos θi � sin θi

sin θi cos θi

� �

(1.4)

It is clear from this equation that the columns of the transformation matrix Ai are unit

vectors (ii1 and ii2) along the axes of the body coordinate system. The planar

transformation matrix A
i is an orthogonal matrix, that is, Ai

A
iT
=A

iT
A
i= I, where

I is the 2� 2 identity matrix. In Chapter 2, the spatial kinematics will be discussed,

and the spatial transformation matrix and its important properties will be examined.

1.3 PARTICLE MECHANICS

Dynamics in general is the science of studying the motion of particles or bodies.

The subject of dynamics can be divided into two major branches, kinematics and

kinetics. In the kinematic analysis, we study the motion regardless of the forces that

cause this motion, while kinetics deals with the motion and forces that produce

it. Therefore, in kinematics attention is focused on the geometric aspects of motion.

The objective is, then, to determine the positions, velocities, and accelerations of the

system under investigation. In order to understand the dynamics of multibody

systems containing rigid and deformable bodies, it is important to understand first

the body dynamics. To this end, a brief discussion on the dynamics of particles that

form the rigid and deformable bodies is first presented.

Particle Kinematics A particle is assumed to have no dimensions and

accordingly can be treated as a point in a three-dimensional space. Therefore, in

studying the kinematics of particles, one is concerned primarily with the translation

of a point with respect to a selected frame of reference. The position of the particle

can then be defined using three coordinates. Figure 1.6 shows a particle p in a

Figure 1.6 Position vector of the particle p.
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three-dimensional space. The position, velocity, and acceleration vectors r, v, and

a of this particle can be written, respectively, as

r ¼ x1i1 þ x2i2 þ x3i3 ¼ x1 x2 x3½ �T

v ¼ _r ¼
dr

dt
¼ _x1i1 þ _x2i2 þ _x3i3 ¼ _x1 _x2 _x3½ �T

a ¼
dv

dt
¼ €x1i1 þ €x2i2 þ €x3i3 ¼ €x1 €x2 €x3½ �T

9

>

>

>

=

>

>

>

;

(1.5)

where (�) denotes differentiation with respect to time; i1, i2, and i3 are unit vectors

along the X1, X2, and X3 axes; x1, x2, and x3 are the Cartesian coordinates of the

particle; _x1, _x2, and _x3 are the Cartesian components of the velocity vector;

and €x1, €x2, and €x3 are the Cartesian components of the acceleration vector. In the

above equation, the velocity of the particle is defined to be the time derivative of

the position vector with the assumption that the axes X1, X2, and X3 are fixed in time

such that the unit vectors i1, i2, and i3 have a constant magnitude and direction.

Choice of Coordinates The set of coordinates that can be used to define the

particle position is not unique. In addition to the Cartesian representation, other sets

of coordinates can be used for the same purpose. In Fig. 1.7, the position of particle p

can be defined using the three cylindrical coordinates, r, ϕ, and z, while in Fig. 1.8,

the particle position is identified using the spherical coordinates r, θ, and ϕ. In many

situations, however, it is useful to obtain kinematic relationships between different

Figure 1.7 Cylindrical coordinates.

Figure 1.8 Spherical coordinates.
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sets of coordinates. For instance, if one considers the planar motion of a particle p in

a circular path as shown in Fig. 1.9, the position vector of the particle can be written

in the fixed coordinate system X1X2 as r= [x1 x2]
T= x1i1 + x2i2, where x1 and x2 are

the coordinates of the particle, and i1 and i2 are unit vectors along the fixed axes

X1 and X2, respectively. In terms of the polar coordinates r and θ, the components x1
and x2 are given by x1 = r cos θ, x2 = r sin θ, and the position, velocity, and acceler-

ation vectors r, v, and a can be written, respectively, as

r ¼ r cos θ i1 þ r sin θ i2 ¼ r cos θ sin θ½ �T

v¼
dr

dt
¼ r _θ � sin θi1 þ cos θi2ð Þ ¼ r _θ � sin θ cos θ½ �T

a¼
dv

dt
¼ r€θ � sin θi1 þ cos θi2ð Þ þ r _θ

� �2
� cos θi1 � sin θi2ð Þ

¼ r � €θ sin θ þ _θ
� �2

cos θ
� 	

€θ cos θ � _θ
� �2

sin θ
� 	h iT

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

(1.6)

These kinematic equations are obtained with the assumption that r in this example is

constant, and i1 and i2 are fixed vectors. One can verify that the acceleration vector a

in this equation can be written as a= α� r+ω� v, where ω and α are, respectively,

the vectors ω ¼ _θi3, and α ¼ €θi3.

One may also define the position vector of p in the moving coordinate system

XrXθ. Let, as shown in Fig. 1.9, ir and iθ be unit vectors along the axes Xr and Xθ,

respectively. It can be verified that these two unit vectors can be written in terms of

the unit vectors along the fixed axes as ir= cos θi1+ sin θi2, iθ= � sin θi1+ cos θi2
and their time derivatives can be written as

_ir ¼
dir

dt
¼ � _θ sin θi1 þ _θ cos θi2 ¼ _θiθ

_iθ ¼
diθ

dt
¼ � _θ cos θi1 � _θ sin θi2 ¼ � _θir

9

>

=

>

;

(1.7)

The position vector of the particle in the moving coordinate system can be

defined as r = rir. Using this equation, the velocity vector of particle p is given

by v = dr/dt = (dr/dt)ir + r(dir/dt). Since the motion of point p is in a circular path,

dr/dt = 0, and the velocity and acceleration vectors v and a reduce to

Figure 1.9 Circular motion of a particle.
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v ¼ r
dir

dt
¼ r _θiθ

a ¼
dv

dt
¼ r€θiθ þ r _θ

diθ

dt
¼ r€θiθ � r _θ

� �2
ir

9

>

=

>

;

(1.8)

which shows that the velocity vector of the particle is always tangent to the circular

path. The first term, r€θ, in the acceleration vector a is called the tangential component

of the acceleration, while the second term, �r _θ
� �2

, is called the normal component.

Particle Dynamics The study of Newtonian mechanics is based on

Newton’s three laws, which are used to study particle mechanics. Newton’s first

law states that a particle remains in its state of rest, or of uniform motion in a straight

line if there are no forces acting on the particle. This means that the particle can be

accelerated if and only if there is a force acting on the particle. Newton’s third law,

which is sometimes called the law of action and reaction, states that to every action

there is an equal and opposite reaction; that is, when two particles exert forces on one

another, these forces will be equal in magnitude and opposite in direction. Newton’s

second law, which is called the law of motion, states that the force that acts on a

particle and causes its motion is equal to the rate of change of momentum of the

particle, that is, F ¼ _P where F is the vector of forces acting on the particle, and P is

the linear momentum of the particle, which can be written as P =mv, where m is the

mass, and v is the velocity vector of the particle. It follows that F= d(mv)/dt. In

nonrelativistic mechanics, the mass m is constant and as a consequence, one has

F ¼ m
dv

dt
¼ ma (1.9)

where a is the acceleration vector of the particle. Equation 9 is a vector equation that

has the three scalar components F1=ma1, F2=ma2, F3=ma3, where F1, F2, and

F3 and a1, a2, and a3 are, respectively, the components of the vectors F and a

defined in the global coordinate system. The vector ma is sometimes called the

inertia or the effective force vector.

1.4 RIGID BODY MECHANICS

Unlike particles, rigid bodies have distributed masses. The configuration of a

rigid body in space can be identified by using six coordinates. Three coordinates

describe the body translation, and three coordinates define the orientation of the

body. Figure 1.10 shows a rigid body denoted as body i in a three-dimensional space.

Let X1X2X3 be a coordinate system that is fixed in time, and let Xi
1X

i
2X

i
3 be a body

coordinate system or body reference whose origin is rigidly attached to a point on the

rigid body. The global position of an arbitrary point Pi on the body can be defined as

ri ¼ Ri þ ui ¼ Ri þ Ai
�ui (1.10)

where ri ¼ ri1 ri2 ri3
� �T

is the global position of point Pi, Ri ¼ Ri
1 Ri

2 Ri
3

� �T
is the

global position vector of the origin Oi of the body reference, Ai is the transformation

matrix that defines the body orientation, �ui ¼ �ui1 �ui2 �ui3
� �T

is the position vector of
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the point defined in the body coordinate system, and ui ¼ Ai
�ui ¼ ui1 ui2 ui3

� �T
is the

position vector of point Pi with respect to Oi. Since an assumption is made

that the body is rigid, the distance between points Pi and Oi remains constant during

the motion of the body; that is, the components of the vector ui in the body coordinate

system are known and constant. The vectors ri and R
i, however, are defined in the

global coordinate system; therefore, it is important to be able to express the vector

u
i in terms of its components along the fixed global axes. To this end, one needs to

define the orientation of the body coordinate system with respect to the global frame

of reference. A transformation between these two coordinate systems can be

developed in terms of a set of rotational coordinates. However, this set of rotational

coordinates is not unique, and many representations can be found in the literature. In

Chapter 2, the transformation matrix that can be used to transform vectors defined

in the body coordinate systems to vectors defined in the global coordinate system and

vice versa is developed. Also some of the most commonly used orientation coordin-

ates such as Euler angles, Euler parameters, Rodriguez parameters, and the direction

cosines are introduced. In some of these representations, more than three orientational

coordinates are used. In such cases, the orientation coordinates are not totally inde-

pendent, since they are related by a set of algebraic equations.

Since Eq. 10 describes the global position of an arbitrary point on the body,

the body configuration can be completely defined, provided the components of the

vectors in the right-hand side of this equation are known. This equation implies that

the general motion of a rigid body is equivalent to a translation of one point, say, Oi,

plus a rotation. A rigid body is said to experience pure translation if the displacements

of any two points on the body are the same. A rigid body is said to experience a pure

rotation about an axis called the axis of rotation, if the particles forming the rigid

body move in parallel planes along circles centered on the same axis. Figure 1.11

shows the translational and rotational motion of a rigid body. It is clear from

Figure 1.10 Rigid body mechanics.

10 INTRODUCTION

www.cambridge.org/9781108485647
www.cambridge.org

