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Introduction

What Is Measurement Invariance?

The concept underlying measurement invariance is often introduced using
a metaphoric example via physical measurements such as length or weight
(Millsap, 2011). Suppose I developed an instrument to estimate the
perimeter of any object. My instrument is invariant if it produces the
same estimate of the object’s perimeter, regardless of the object’s shape.
For example, if my instrument provides the same estimate of the perimeter
for a circle and a rectangle that have the same true perimeter, then it is
invariant. However, if for a circle and a rectangle of the same true
perimeter my measure systematically overestimates the perimeters of rect-
angles, then my measure is not invariant across objects. The object’s shape
should be an irrelevant factor in that my instrument is expected to provide
an accurate estimate of the perimeter, regardless of the object’s shape.
However, when we have a lack of measurement invariance, the estimated
perimeter provided by my instrument is influenced not only by the true
perimeter but also by the object’s shape. When we lack measurement
invariance, irrelevant factors systematically influence the estimates our
instruments are designed to produce.
We can apply the concept of measurement invariance from physical

variables to variables in the social sciences. To do so, let’s suppose I have a
constructed-response item, scored 0 to 10, that measures Grade 8 math
proficiency. For the item to be invariant, the expected scores for students
with the same math proficiency level should be equal, regardless of other
variables such as country membership. However, if, for example, Korean
students with the same math proficiency level as American students have
higher expected scores than Americans, then the item lacks measurement
invariance. In this case, an irrelevant factor (i.e., country membership)
plays a role in estimating item performance beyond math proficiency.
When using my non-invariant instrument to estimate the perimeter of
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an object, I need the estimate from my instrument, as well as the shape of
the object, to provide an accurate estimate. The same is true for the non-
invariant math item. To estimate accurately a student’s math proficiency,
I would need their response on the item and their country membership.
For an invariant math item, however, I would only need their
item response.

While the use of physical measurements can be useful for introducing
the concept of measurement invariance, there are two important differ-
ences when extending the idea to constructs in the social sciences, such as
math proficiency or depression. First, the variables we measure in the social
sciences are latent and cannot be directly observed. Instead, we make
inferences from our observations that are often based on responses to
stimuli such as multiple-choice, Likert-type, or constructed-response
items. As a result, we must deal with unreliability, which makes it more
difficult to determine whether our measures (or items) are invariant.
Second, in the physical world we can obtain a gold standard that provides
very accurate measurements. The gold standard can be used to match
object shapes based on their true perimeter, which then allows us to
compare the estimates produced by my instrument between different
object shapes of the same perimeter. Unfortunately, there are no gold
standards in the social sciences for the latent variables we are measuring.
Latent variables that are used to match students are flawed to a
certain degree, which, again, makes it difficult to assess measurement
invariance.

Measurement invariance in the social sciences essentially indicates that a
measure (or its items) is behaving in the same manner for people from
different groups. To assess measurement invariance, we compare the
performance on the item or set of items between the groups while match-
ing on the proficiency level of the latent variable. While the idea of the
items behaving in the same way between groups is useful for conveying the
essence of measurement invariance, it is too simple to provide an accurate
technical definition to understand the statistical approaches for examining
measurement invariance. To fully understand what I mean by an item
being invariant across groups within a population, I will begin by first
defining the functional relationship between the latent variable being
measured, which I will denote as θ, and item performance, denoted Y.
The general notation for a functional relationship can be expressed as
f Y θjð Þ, which indicates that the response to the item or set of items is a
function of the latent variable. For example, if an item is scored dichoto-
mously (Y ¼ 0 for an incorrect response, Y ¼ 1 for a correct response),
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then f Y θjð Þ refers to the probability of correctly answering the item given
an examinee’s level on the latent variable, and can be written as
P Y ¼ 1 θjð Þ. For an item in which measurement invariance is satisfied,
the functional relationship is the same in both groups; that is,

P Y ¼ 1 θ;G ¼ g1
�

�

� �

¼ P Y ¼ 1 θ;G ¼ g2
�

�

� �

: (1.1)

G refers to group membership, with g1 and g2 representing two separate
groups (e.g., Korea and America). Another way of expressing measurement
invariance is that group membership does not provide any additional
information about the item performance above and beyond θ (Millsap,
2011). In other words,

P Y ¼ 1 θ;Gjð Þ ¼ P Y ¼ 1 θjð Þ: (1.2)

To illustrate the idea of measurement invariance graphically, Figure 1.1
provides an example of the functional relationships for two groups on a
dichotomously scored item that is invariant. The horizontal axis represents
the proficiency level on the latent variable – in this book, I will refer to the
level on the latent variable as proficiency. The vertical axis provides the
probability of a correct response. Because the item is invariant, the func-
tional relationships for both groups are identical (i.e., the probability of a
correct response given θ is identical in both groups). The proficiency
distributions for each group are shown underneath the horizontal axis.
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Figure 1.1 An example of functional relationships for two groups on a dichotomously
scored item that is invariant.
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We can see that Group 1 has a higher proficiency than Group 2. The
difference in proficiency distributions between the groups highlights the
idea that matching on proficiency is an important aspect of the definition
and assessment of measurement invariance. If we do not control for
differences on θ between the groups, then differences in item performance
may be due to true differences on the latent variable, not necessarily a lack
of measurement invariance. The difference between latent variable distri-
butions is referred to as impact. For example, since Group 1 has a higher
mean θ distribution than Group 2, then Group 1 would have, on average,
performed better on the item than Group 2, even if the functional
relationship was identical, as shown in Figure 1.1. As a result, the propor-
tion of examinees in Group 1 who answered the item correctly would have
been higher compared to Group 2. However, once we control for differ-
ences in proficiency by conditioning on θ, item performance is identical.
The fact that we want to control for differences in the latent variable before
we compare item performance highlights the idea that we are not willing to
assume the groups have the same θ distributions when assessing
measurement invariance.

Figure 1.2 illustrates an item that lacks measurement invariance. In this
case, the probability of a correct response conditioned on θ is higher for

Figure 1.2 An example of functional relationships for two groups on a dichotomously
scored item that lacks invariance.
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Group 1, indicating that the item is relatively easier for Group 1. In other
words, Group 1 examinees of the same proficiency level as examinees from
Group 2 have a higher probability of answering the item correctly. When
measurement invariance does not hold, as shown in Figure 1.2, then the
functional relationships for Groups 1 and 2 are not the same (i.e.,

f Y θ;G ¼ g1
�

�

� �

6¼ f Y θ;G ¼ g2
�

�

� �

). Therefore, to explain item perfor-

mance we need proficiency and group membership. In the case of non-
invariance, the item is functioning differentially between the groups; in
other words, the item is exhibiting differential item functioning (DIF). In
this book, I will refer to a lack of measurement invariance as DIF. In fact,
many of the statistical techniques used to assess measurement invariance
are traditionally referred to as DIF methods.
The concept of measurement invariance can be applied to polytomously

scored items; that is, items that have more than two score points (e.g.,
partial-credit or Likert-type items). For a polytomous item, Y could refer
to the probability of responding to a category, or it could refer to the
expected score on the item. For example, Figure 1.3 illustrates an invariant
(top plot) and non-invariant (bottom plot) functional relationship for a
polytomous item with five score categories. The vertical axis ranges from
0 to 4 and represents the expected scores on the polytomous item condi-
tioned on θ (i.e., E Y ¼ y θjð Þ). The expected item scores conditioned on
proficiency are identical when invariance is satisfied but differ when the
property of invariance is not satisfied.
Measurement invariance can also be extended to compare performance

on a subset of items from a test (e.g., items that represent a content
domain). In this case, the functional relationship looks a lot like a poly-
tomous item in that we are comparing the expected score conditioned on
the latent variable. When a scale based on a subset of items from a test
lacks invariance, we often refer to it as differential bundle functioning
(DBF). A special case of DBF is when we examine the performance of
all items on a test. In this case, we are examining the invariance at the test
score level. When the invariance is violated at the test score level, we refer
to it as differential test functioning (DTF).

Why Should We Assess Measurement Invariance?

There are two basic reasons for why we should care about whether a test
and its items are invariant across groups in a population. The first reason
pertains to test validity in that the presence of DIF can impede test score
interpretations and uses of the test. The Standards for Educational and
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Psychological Testing (American Educational Research Association,
American Psychological Association, & National Council on
Measurement in Education, 2014) describe five sources of validity: con-
tent, response processes, internal structure, relation to other variables, and
consequences. Providing evidence to support measurement invariance is
one of the aspects of internal structure. The presence of DIF is an
indication that there may be a construct-irrelevant factor (or factors)
influencing item performance. The consequences of having items that lack
invariance in a test can be severe in some cases. For example, a lack of
invariance at the item level can manifest to the test score level, leading to
unfair comparisons of examinees from different groups. If the DIF is large
enough, examinees may be placed into the wrong performance category
(imagine how disheartening it would be, after working diligently to

Figure 1.3 An illustration of an invariant and non-invariant polytomous item.
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successfully build skills in, say, math, to be placed into a performance
category below your expectation because of something other than math
proficiency). A lack of invariance is not just a validity concern for large-
scale assessments but for any test in which a decision is being made using a
test score, such as remediation plans for struggling students in schools,
determining whether an intervention is effective for a student, assigning
grades or performance descriptors to students’ report cards, etc. The
examples I have discussed so far have pertained to educational tests.
However, the importance of measurement invariance also applies to non-
cognitive tests such as psychological inventories, attitudinal measures, and
observational measures. In fact, it is important to establish measurement
invariance for any measure prior to making any group comparisons using
its results. Essentially, any time we are planning on using a score from an
instrument, we should collect evidence of measurement invariance so that
we can be confident that no construct-irrelevant factor is playing a mean-
ingful role in our interpretations and uses.
In addition to the direct effect that DIF can have on test score inter-

pretation and use, it can also indirectly influence validity through its
deleterious effect on measurement processes. For example, DIF can disrupt
a scale score via its negative effect on score equating or scaling when using
item response theory (IRT). A common goal in many testing programs is
to establish a stable scale over time with the goal of measuring improve-
ment (e.g., the proportion of proficient students within Grade 8 math
increases over consecutive years) and growth (each student demonstrates
improved proficiency over grades). Tests contain items that are common
between testing occasions (e.g., administration years) that are used to link
scales so that the scales have the same meaning. If some of the common
items contain DIF, then the equating or scaling can be corrupted, which
results in an unstable scale. This type of DIF, where the groups are defined
by testing occasion, is referred to as item parameter drift in that some of the
items become easier or harder over time after controlling for proficiency
differences (Goldstein, 1983). A consequence of item parameter drift is
that inferences drawn from test scores may be inaccurate (e.g., examinees
may be placed into the wrong performance categories).
A second purpose for assessing measurement invariance is when we have

substantive research questions pertaining to how populations may differ on
a latent variable. For example, suppose we want to compare geographic
regions on a math test. In addition to examining mean differences between
regions, assessing measurement could provide useful information about
how the items are functioning across the regions. We could find that
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certain domains of items are relatively harder for a particular region,
suggesting that perhaps that group did not have the same opportunity to
learn the content. Assessing measurement invariance in this context could
also be useful for psychological latent variables. For instance, we may be
interested in comparing gender groups on a measure of aggressiveness.
Items that are flagged as DIF may provide insight into differences between
the groups.

Forms of DIF

It is helpful to have nomenclature to classify the types of non-invariance.
There are two basic forms of DIF: uniform and nonuniform (Mellenbergh,
1982). Uniform DIF occurs when the functional relationship differs
between the groups consistently or uniformly across the proficiency scale.
The plot shown in Figure 1.2 provides an example of uniform DIF. In this
case, the probability of a correct response for Group 1 is higher compared
to Group 2 throughout the proficiency scale. At the item level, the
difference in the functional relationships for uniform DIF is defined only
by the item difficulty, whereas the item discrimination is the same in both
groups. As I will describe in Chapter 3, where I address IRT, the item
discrimination is related to the slope of the functional relationship curve.
In uniform DIF, the curve shifts to the right or left for one of the groups,
while the slope remains the same.

Nonuniform DIF occurs when the lack of invariance is due to the
discrimination between the groups, regardless of whether the difficulty
differs between the groups. Whereas for uniform DIF the item can only
be harder or easier for one of the groups, nonuniform DIF can take on
many forms. Figure 1.4 provides two examples of nonuniform DIF. In
the top plot, the DIF is defined only by the difference in discrimination
between the two groups; in this case, the curve is flatter for Group 2,
indicating a less discriminating item compared to Group 1. The differ-
ence between Groups 1 and 2 in answering the item correctly depends on
the θ value; for lower θ values, the item is relatively easier for Group 2,
whereas for higher θ values, the item is relatively harder compared to
Group 1. The bottom plot in Figure 1.4 provides another example of
nonuniform DIF, but in this case the item differs with respect to
discrimination and difficulty such that the item is less discriminating
and more difficult in Group 2. When testing for DIF, our goal is often
not only to detect DIF but also to describe the nature or form of
the DIF.
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Another important factor to consider when describing DIF is whether
the set of DIF items is consistently harder or easier for one of the groups.
When the DIF is consistent across items (e.g., the DIF items are all harder
in one of the groups), then it is referred to as unidirectional DIF. If, on the
other hand, some of the DIF items are easier in one group, while some of
the other DIF items are harder, then that is referred to as bidirectional DIF.
The reason it is helpful to make this distinction is that the effect of
unidirectional DIF can often pose a more serious risk to psychometric
procedures such as equating and making test score comparisons. In addi-
tion, unidirectional DIF can also make it more difficult to detect DIF
items in that the DIF has a larger impact on the latent variable used to
match examinees (see discussion on purification procedures for further
details and how to mitigate the effect of unidirectional DIF).
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Figure 1.4 Two examples of nonuniform DIF.
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Classification of DIF Detection Methods

The statistical techniques used to assess measurement invariance that we
will explore in this book can be classified under three general approaches.
Each of the approaches differs with respect to how the latent variable used
to match examinees is measured. The first class of DIF detection methods,
referred to as observed-score methods, uses the raw score as a proxy for θ.
The raw scores are used to match examinees when comparing item
performance. For example, measurement invariance is assessed by com-
paring item performance (e.g., the proportion correct for a dichotomously
scored item) for examinees from different groups with the same raw score.
Observed-score methods have the advantage of providing effect sizes to
classify a detected item as nontrivial DIF. The observed-score methods
addressed in this book include the Mantel–Haenszel procedure (Holland,
1985; Holland & Thayer, 1988), the standardization DIF method
(Dorans & Kulick, 1986; Dorans & Holland, 1993), logistic regression
(Swaminathan & Rogers, 1990), and the Simultaneous Item Bias Test
(SIBTEST; Shealy & Stout, 1993a, 1993b). I will describe the observed-
score methods in Chapter 2.

The second class of methods uses a nonlinear latent variable model to
define θ and subsequently the functional relationship. These methods rely
on IRT models. The plots shown in Figures 1.1–1.4 are examples of
item response functions provided by IRT models. One of the advantages
of using IRT to examine DIF is that the models provide a convenient
evaluation of DIF that is consistent with the definition of DIF. The IRT
methods addressed in this book include b-plot, Lord’s chi-square (Lord,
1977, 1980), the likelihood-ratio test (Thissen, Steinberg, & Wainer,
1993), Raju’s area measure (Raju, 1988, 1990), and differential function-
ing of items and tests (DFIT; Raju, van der Linden, & Fleer, 1995). I will
describe the basic ideas of IRT in Chapter 3 and the IRT-based DIF
methods in Chapter 4.

The third class of methods uses a linear latent variable model via
confirmatory factor analysis (CFA). Although there is a strong relationship
between CFA and IRT, and the methods used to examine DIF are similar
in some respects, they are distinct in important ways. For example, CFA
and IRT evaluate the fit of the respective latent variable model using very
different approaches and statistics. One of the advantages of using CFA to
assess measurement invariance is that it provides a comprehensive evalua-
tion of the data structure and can easily accommodate complicated multi-
dimensional models. The methods we will examine in this book include

10 Introduction

www.cambridge.org/9781108485227
www.cambridge.org

