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CHAPTER ONE

Introduction

Computer science as an academic discipline began in the 1960s. Emphasis was on

programming languages, compilers, operating systems, and the mathematical theory

that supported these areas. Courses in theoretical computer science covered inite

automata, regular expressions, context-free languages, and computability. In the

1970s, the study of algorithms was added as an important component of theory. The

emphasis was on making computers useful. Today, a fundamental change is taking

place and the focus is more on a wealth of applications. There are many reasons

for this change. The merging of computing and communications has played an

important role. The enhanced ability to observe, collect, and store data in the natural

sciences, in commerce, and in other ields calls for a change in our understanding of

data and how to handle it in the modern setting. The emergence of the web and social

networks as central aspects of daily life presents both opportunities and challenges

for theory.

While traditional areas of computer science remain highly important, increasingly

researchers of the future will be involved with using computers to understand and

extract usable information from massive data arising in applications, not just how to

make computers useful on speciic well-deined problems. With this in mind we have

written this book to cover the theory we expect to be useful in the next 40 years, just

as an understanding of automata theory, algorithms, and related topics gave students

an advantage in the last 40 years. One of the major changes is an increase in emphasis

on probability, statistics, and numerical methods.

Early drafts of the book have been used for both undergraduate and graduate

courses. Background material needed for an undergraduate course has been put into

a background chapter with associated homework problems.

Modern data in diverse ields such as information processing, search, andmachine

learning is often advantageously represented as vectors with a large number of com-

ponents. The vector representation is not just a book-keeping device to store many

ields of a record. Indeed, the two salient aspects of vectors – geometric (length,

dot products, orthogonality, etc.) and linear algebraic (independence, rank, singular

values, etc.) – turn out to be relevant and useful. Chapters 2 and 3 lay the foundations

of geometry and linear algebra, respectively. More speciically, our intuition from

two- or three-dimensional space can be surprisingly off the mark when it comes

to high dimensions. Chapter 2 works out the fundamentals needed to understand

the differences. The emphasis of the chapter, as well as the book in general, is to

get across the intellectual ideas and the mathematical foundations rather than focus
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on particular applications, some of which are briely described. Chapter 3 focuses

on singular value decomposition (SVD) a central tool to deal with matrix data. We

give a from-irst-principles description of the mathematics and algorithms for SVD.

Applications of singular value decomposition include principal component analysis,

a widely used technique we touch on, as well as modern applications to statistical

mixtures of probability densities, discrete optimization, etc., which are described in

more detail.

Exploring large structures like the web or the space of conigurations of a large

system with deterministic methods can be prohibitively expensive. Random walks

(also calledMarkov chains) turn out often to be more eficient as well as illuminative.

The stationary distributions of such walks are important for applications ranging

from web search to the simulation of physical systems. The underlying mathematical

theory of such random walks, as well as connections to electrical networks, forms

the core of Chapter 4 on Markov chains.

One of the surprises of computer science over the last two decades is that some

domain-independent methods have been immensely successful in tackling problems

from diverse areas. Machine learning is a striking example. Chapter 5 describes the

foundations of machine learning, both algorithms for optimizing over given training

examples as well as the theory for understanding when such optimization can be

expected to lead to good performance on new, unseen data. This includes important

measures such as the Vapnik–Chervonenkis dimension; important algorithms such

as the Perceptron Algorithm, stochastic gradient descent, boosting, and deep learn-

ing; and important notions such as regularization and overitting.

The ield of algorithms has traditionally assumed that the input data to a problem

is presented in random access memory, which the algorithm can repeatedly access.

This is not feasible for problems involving enormous amounts of data. The streaming

model and other models have been formulated to relect this. In this setting, sampling

plays a crucial role and, indeed, we have to sample on the ly. In Chapter 6 we study

how to draw good samples eficiently and how to estimate statistical and linear alge-

bra quantities with such samples.

While Chapter 5 focuses on supervised learning, where one learns from labeled

training data, the problem of unsupervised learning, or learning from unlabeled data,

is equally important. A central topic in unsupervised learning is clustering, discussed

in Chapter 7. Clustering refers to the problem of partitioning data into groups of

similar objects. After describing some of the basic methods for clustering, such as the

k-means algorithm, Chapter 7 focuses on modern developments in understanding

these, as well as newer algorithms and general frameworks for analyzing different

kinds of clustering problems.

Central to our understanding of large structures, like the web and social networks,

is building models to capture essential properties of these structures. The simplest

model is that of a random graph formulated by Erdös and Renyi, which we study in

detail in Chapter 8, proving that certain global phenomena, like a giant connected

component, arise in such structures with only local choices. We also describe other

models of random graphs.

Chapter 9 focuses on linear-algebraic problems of making sense from data, in

particular topic modeling and nonnegative matrix factorization. In addition to dis-

cussing well-known models, we also describe some current research on models and
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algorithms with provable guarantees on learning error and time. This is followed by

graphical models and belief propagation.

Chapter 10 discusses ranking and social choice as well as problems of sparse rep-

resentations such as compressed sensing. Additionally, Chapter 10 includes a brief

discussion of linear programming and semideinite programming. Wavelets, which

are an important method for representing signals across a wide range of applications,

are discussed in Chapter 11 along with some of their fundamental mathematical

properties. Chapter 12 includes a range of background material.

A word about notation in the book. To help the student, we have adopted certain

notations and, with a few exceptions, adhered to them. We use lowercase letters for

scalar variables and functions, boldface lowercase for vectors, and uppercase letters

for matrices. Lowercase near the beginning of the alphabet tend to be constants; in

the middle of the alphabet, such as i, j, and k, are indices in summations; n andm for

integer sizes; and x, y, and z for variables. If A is a matrix, its elements are aij and its

rows are ai. If ai is a vector, its coordinates are aij. Where the literature traditionally

uses a symbol for a quantity, we also used that symbol, even if it meant abandoning

our convention. If we have a set of points in some vector space, and work with a

subspace, we use n for the number of points, d for the dimension of the space, and k

for the dimension of the subspace.

The term “almost surely” means with probability tending to one. We use ln n for

the natural logarithm and log n for the base two logarithm. If we want base ten, we

will use log10. To simplify notation and to make it easier to read, we use E2(1 − x)

for
(

E(1 − x)
)2

and E(1 − x)2 for E
(

(1 − x)2
)

. When we say “randomly select”

some number of points from a given probability distribution, independence is always

assumed unless otherwise stated.
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CHAPTER TWO

High-Dimensional Space

2.1. Introduction

High-dimensional data has become very important. However, high-dimensional

space is very different from the two- and three-dimensional spaces we are familiar

with. Generate n points at random in d-dimensions where each coordinate is a zero

mean, unit variance Gaussian. For suficiently large d, with high probability, the

distances between all pairs of points will be essentially the same. Also the volume

of the unit ball in d-dimensions, the set of all points x such that |x| ≤ 1, goes to

zero as the dimension goes to ininity. The volume of a high-dimensional unit ball is

concentrated near its surface and is also concentrated at its equator. These properties

have important consequences that we will consider.

2.2. The Law of Large Numbers

If one generates random points in d-dimensional space using a Gaussian to generate

coordinates, the distance between all pairs of points will be essentially the same when

d is large. The reason is that the square of the distance between two points y and z,

|y − z|2 =
d

∑

i=1

(yi − zi)
2,

can be viewed as the sum of d independent samples of a random variable x that is

the squared difference of two Gaussians. In particular, we are summing independent

samples xi = (yi − zi)
2 of a random variable x of bounded variance. In such a

case, a general bound known as the Law of Large Numbers states that with high

probability, the average of the samples will be close to the expectation of the random

variable. This in turn implies that with high probability, the sum is close to the sum’s

expectation.

Speciically, the Law of Large Numbers states that

Prob

(
∣

∣

∣

∣

x1 + x2 + · · · + xn

n
− E(x)

∣

∣

∣

∣

≥ ǫ

)

≤
Var(x)

nǫ2
. (2.1)

The larger the variance of the random variable, the greater the probability that the

error will exceed ǫ. Thus the variance of x is in the numerator. The number of samples

n is in the denominator, since the more values that are averaged, the smaller the

probability that the difference will exceed ǫ. Similarly the larger ǫ is, the smaller the
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2.2. THE LAWOF LARGE NUMBERS

probability that the difference will exceed ǫ and hence ǫ is in the denominator. Notice

that squaring ǫ makes the fraction a dimensionless quantity.

We use two inequalities to prove the Law of Large Numbers. The irst is Markov’s

inequality that states that the probability that a nonnegative random variable exceeds

a is bounded by the expected value of the variable divided by a.

Theorem 2.1 (Markov’s inequality) Let x be a nonnegative random variable. Then

for a > 0,

Prob(x ≥ a) ≤
E(x)

a
.

Proof For a continuous nonnegative random variable x with probability

density p,

E(x) =
∞

∫

0

xp(x)dx =
a

∫

0

xp(x)dx+
∞

∫

a

xp(x)dx

≥
∞

∫

a

xp(x)dx ≥ a

∞
∫

a

p(x)dx = aProb(x ≥ a).

Thus, Prob(x ≥ a) ≤ E(x)
a

. �

The same proof works for discrete random variables with sums instead of

integrals.

Corollary 2.2 Prob(x ≥ bE(x)) ≤ 1
b

Markov’s inequality bounds the tail of a distribution using only information about

the mean. A tighter bound can be obtained by also using the variance of the random

variable.

Theorem 2.3 (Chebyshev’s inequality) Let x be a random variable. Then for

c > 0,

Prob
(

|x− E(x)| ≥ c
)

≤
Var(x)

c2
.

Proof Prob(|x − E(x)| ≥ c) = Prob(|x − E(x)|2 ≥ c2). Note that y =
|x− E(x)|2 is a nonnegative random variable and E(y) = Var(x), so Markov’s

inequality can be applied giving:

Prob(|x− E(x)| ≥ c) = Prob
(

|x− E(x)|2 ≥ c2
)

≤
E(|x− E(x)|2)

c2
=
Var(x)

c2
.

�

The Law of Large Numbers follows from Chebyshev’s inequality together with

facts about independent random variables. Recall that:

E(x+ y) = E(x) + E(y),

Var(x− c) = Var(x),

Var(cx) = c2Var(x).
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HIGH-DIMENSIONAL SPACE

Also, if x and y are independent, then E(xy) = E(x)E(y). These facts imply that if x

and y are independent, then Var(x+ y) = Var(x) + Var(y), which is seen as follows:

Var(x+ y) = E(x+ y)2 − E2(x+ y)

= E(x2 + 2xy+ y2) −
(

E2(x) + 2E(x)E(y) + E2(y)
)

= E(x2) − E2(x) + E(y2) − E2(y) = Var(x) + Var(y),

where we used independence to replace E(2xy) with 2E(x)E(y).

Theorem 2.4 (Law of Large Numbers) Let x1, x2, . . . , xn be n independent

samples of a random variable x. Then

Prob
(
∣

∣

∣

x1 + x2 + · · · + xn

n
− E(x)

∣

∣

∣
≥ ǫ

)

≤
Var(x)

nǫ2

Proof E(
x1+x2+···+xn

n
) = E(x) and thus

Prob

(∣

∣

∣

∣

x1 + x2 + · · · + xn

n
− E(x)

∣

∣

∣

∣

≥ ǫ

)

= Prob

(∣

∣

∣

∣

x1 + x2 + · · · + xn

n

− E

(

x1 + x2 + · · · + xn

n

)
∣

∣

∣

∣

≥ ǫ

)

By Chebyshev’s inequality,

Prob

(
∣

∣

∣

∣

x1 + x2 + · · · + xn

n
− E(x)

∣

∣

∣

∣

≥ǫ

)

= Prob

(
∣

∣

∣

∣

x1 + x2 + · · · + xn

n

− E

(

x1 + x2 + · · · + xn

n

)
∣

∣

∣

∣

≥ ǫ

)

≤
Var

(x1+x2+···+xn
n

)

ǫ2

=
1

n2ǫ2
Var(x1 + x2 + · · · + xn)

=
1

n2ǫ2

(

Var(x1) + Var(x2) + · · · + Var(xn)
)

=
Var(x)

nǫ2
.

�

The Law of Large Numbers is quite general, applying to any random variable x

of inite variance. Later we will look at tighter concentration bounds for spherical

Gaussians and sums of 0–1 valued random variables.

One observation worth making about the Law of Large Numbers is that the size

of the universe does not enter into the bound. For instance, if you want to knowwhat

fraction of the population of a country prefers tea to coffee, then the number n of

people you need to sample in order to have at most a δ chance that your estimate is

off bymore than ǫ depends only on ǫ and δ and not on the population of the country.

As an application of the Law of Large Numbers, let z be a d-dimensional random

point whose coordinates are each selected from a zero mean, 1
2π

variance Gaussian.
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2.2. THE LAWOF LARGE NUMBERS

Table 2.1: Table of tail bounds. The Higher Moments bound is obtained by applying Markov to xr.

The Chernoff, Gaussian Annulus, and Power Law bounds follow from Theorem 2.5 which is proved in

Chapter 12.

Condition Tail bound

Markov x ≥ 0 Prob(x ≥ a) ≤ E(x)
a

Chebyshev Any x Prob
(

|x− E(x)| ≥ a
)

≤ Var(x)
a2

Chernoff x = x1 + x2 + · · · + xn Prob(|x− E(x)| ≥ εE(x))

xi ∈ [0, 1] i.i.d. Bernoulli; ≤ 3e−cε
2E(x)

Higher Moments r positive even integer Prob(|x| ≥ a) ≤ E(xr)/ar

Gaussian x =
√

x21 + x22 + · · · + x2n Prob(|x−
√
n| ≥ β) ≤ 3e−cβ

2

Annulus xi ∼ N(0, 1);β ≤
√
n indep.

Power Law x = x1 + x2 + · · · + xn Prob
(

|x− E(x)| ≥ εE(x)
)

for xi; order k ≥ 4 xi i.i.d ; ε ≤ 1/k2 ≤ (4/ε2kn)(k−3)/2

We set the variance to 1
2π

so the Gaussian probability density equals one at the origin

and is bounded below throughout the unit ball by a constant.1 By the Law of Large

Numbers, the square of the distance of z to the origin will be �(d) with high proba-

bility. In particular, there is vanishingly small probability that such a random point z

would lie in the unit ball. This implies that the integral of the probability density over

the unit ball must be vanishingly small. On the other hand, the probability density

in the unit ball is bounded below by a constant. We thus conclude that the unit ball

must have vanishingly small volume.

Similarly if we draw two points y and z from a d-dimensional Gaussian with unit

variance in each direction, then |y|2 ≈ d and |z|2 ≈ d. Since for all i,

E(yi − zi)
2 = E(y2i ) + E(z2i ) − 2E(yizi) = Var(yi) + Var(zi) − 2E(yi)E(zi) = 2,

|y − z|2 =
∑d

i=1(yi − zi)
2 ≈ 2d. Thus by the Pythagorean theorem, the random

d-dimensional y and z must be approximately orthogonal. This implies that if we

scale these random points to be unit length and call y the North Pole, much of the

surface area of the unit ball must lie near the equator. We will formalize these and

related arguments in subsequent sections.

We now state a general theorem on probability tail bounds for a sum of inde-

pendent random variables. Tail bounds for sums of Bernoulli, squared Gaussian,

and Power Law distributed random variables can all be derived from this. Table 2.1

summarizes some of the results.

1If we instead used variance 1, then the density at the origin would be a decreasing function of d, namely

( 1
2π

)d/2, making this argument more complicated.

7

www.cambridge.org/9781108485067
www.cambridge.org


Cambridge University Press
978-1-108-48506-7 — Foundations of Data Science
Avrim Blum , John Hopcroft , Ravi Kannan 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

HIGH-DIMENSIONAL SPACE

Theorem 2.5 (Master Tail Bounds Theorem) Let x = x1 + x2 + · · · + xn,

where x1, x2, . . . , xn are mutually independent random variables with zero mean

and variance at most σ 2. Let 0 ≤ a ≤
√
2nσ 2. Assume that |E(xsi )| ≤ σ 2s! for

s = 3, 4, . . . , ⌊(a2/4nσ 2)⌋. Then,

Prob (|x| ≥ a) ≤ 3e−a
2/(12nσ 2).

The proof of Theorem 2.5 is elementary. A slightly more general version, Theo-

rem 12.5, is given in Chapter 12. For a brief intuition of the proof, consider applying

Markov’s inequality to the random variable xr where r is a large even number. Since

r is even, xr is nonnegative, and thus Prob(|x| ≥ a) = Prob(xr ≥ ar) ≤ E(xr)/ar.

If E(xr) is not too large, we will get a good bound. To compute E(xr), write E(x) as

E(x1 + · · · + xn)
r and expand the polynomial into a sum of terms. Use the fact that

by independence E(x
ri
i x

rj
j ) = E(x

ri
i )E(x

rj
j ) to get a collection of simpler expectations

that can be bounded using our assumption that |E(xsi )| ≤ σ 2s!. For the full proof,

see Chapter 12.

2.3. The Geometry of High Dimensions

An important property of high-dimensional objects is that most of their volume is

near the surface. Consider any object A in Rd . Now shrink A by a small amount ǫ

to produce a new object (1 − ǫ)A = {(1 − ǫ)x|x ∈ A}. Then the following equality

holds:

volume
(

(1 − ǫ)A
)

= (1 − ǫ)dvolume(A).

To see that this is true, partitionA into ininitesimal cubes. Then, (1−ε)A is the union

of a set of cubes obtained by shrinking the cubes in A by a factor of 1− ε. When we

shrink each of the 2d sides of a d-dimensional cube by a factor f , its volume shrinks

by a factor of f d . Using the fact that 1 − x ≤ e−x, for any object A in Rd we have:

volume
(

(1 − ǫ)A
)

volume(A)
= (1 − ǫ)d ≤ e−ǫd .

Fixing ǫ and letting d → ∞, the above quantity rapidly approaches zero. This means

that nearly all of the volume of A must be in the portion of A that does not belong

to the region (1 − ǫ)A.

Let S denote the unit ball in d-dimensions, that is, the set of points within distance

one of the origin. An immediate implication of the above observation is that at least

a 1 − e−ǫd fraction of the volume of the unit ball is concentrated in S \ (1 − ǫ)S,

namely in a small annulus of width ǫ at the boundary. In particular, most of the

volume of the d-dimensional unit ball is contained in an annulus of width O(1/d)

near the boundary. This is illustrated in Figure 2.1. If the ball is of radius r, then the

annulus width is O
(

r
d

)

.

2.4. Properties of the Unit Ball

We now focus more speciically on properties of the unit ball in d-dimensional space.

We just saw that most of its volume is concentrated in a small annulus of width

O(1/d) near the boundary. Next we will show that in the limit as d goes to ininity,
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2.4. PROPERTIES OF THE UNIT BALL

1

1 − 1
d

Annulus of

width 1
d

Figure 2.1: Most of the volume of the d-dimensional ball of radius r is contained in an annulus of width

O(r/d) near the boundary.

the volume of the ball goes to zero. This result can be proven in several ways. Here

we use integration.

2.4.1. Volume of the Unit Ball

To calculate the volume V(d) of the unit ball in Rd , one can integrate in either

Cartesian or polar coordinates. In Cartesian coordinates the volume is given by

V(d) =
x1=1
∫

x1=−1

x2=
√

1−x21
∫

x2=−
√

1−x21

· · ·

xd=
√

1−x21−···−x2
d−1

∫

xd=−
√

1−x21−···−x2
d−1

dxd · · · dx2dx1.

Since the limits of the integrals are complicated, it is easier to integrate using polar

coordinates. In polar coordinates, V(d) is given by

V(d) =
∫

Sd

1
∫

r=0

rd−1drd	.

Since the variables 	 and r do not interact,

V(d) =
∫

Sd

d	

1
∫

r=0

rd−1dr =
1

d

∫

Sd

d	 =
A(d)

d

where A(d) is the surface area of the d-dimensional unit ball. For instance, for d = 3

the surface area is 4π and the volume is 4
3
π . The question remains how to determine

the surface area A(d) =
∫

Sd d	 for general d.

Consider a different integral,

I(d) =
∞

∫

−∞

∞
∫

−∞

· · ·
∞

∫

−∞

e−
(

x21+x
2
2+···x2

d

)

dxd · · · dx2dx1.

Including the exponential allows integration to ininity rather than stopping at the

surface of the sphere. Thus, I(d) can be computed by integrating in both Cartesian

9
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HIGH-DIMENSIONAL SPACE

and polar coordinates. Integrating in polar coordinates will relate I(d) to the surface

area A(d). Equating the two results for I(d) allows one to solve for A(d).

First, calculate I(d) by integration in Cartesian coordinates.

I(d) =

⎡

⎣

∞
∫

−∞

e−x
2
dx

⎤

⎦

d

=
(√

π
)d = π

d
2 .

Here, we have used the fact that
∫ ∞
−∞ e−x

2
dx =

√
π . For a proof of this, see Sec-

tion 12.2 of Chapter 12. Next, calculate I(d) by integrating in polar coordinates. The

volume of the differential element is rd−1d	dr. Thus,

I(d) =
∫

Sd

d	

∞
∫

0

e−r
2
rd−1dr.

The integral
∫

Sd d	 is the integral over the entire solid angle and gives the surface

area, A(d), of a unit sphere. Thus, I(d) = A(d)
∫ ∞
0 e−r

2
rd−1dr. Evaluating the

remaining integral gives

∞
∫

0

e−r
2
rd−1dr =

∞
∫

0

e−tt
d−1
2

(

1

2
t−

1
2 dt

)

=
1

2

∞
∫

0

e−tt
d
2−1dt =

1

2
Ŵ

(

d

2

)

,

and hence, I(d) = A(d)1
2
Ŵ

(

d
2

)

where the Gamma function Ŵ(x) is a generalization

of the factorial function for non-integer values of x. Ŵ(x) = (x− 1)Ŵ(x− 1),Ŵ(1) =
Ŵ(2) = 1, and Ŵ

(

1
2

)

=
√

π . For integer x,Ŵ(x) = (x− 1)!.

Combining I(d) = π
d
2 with I(d) = A(d)1

2
Ŵ

(

d
2

)

yields

A(d) =
π

d
2

1
2
Ŵ

(

d
2

) ,

establishing the following lemma.

Lemma 2.6 The surface area A(d) and the volume V(d) of a unit-radius ball in

d-dimensions are given by

A(d) =
2π

d
2

Ŵ( d
2
)

and V(d) =
2π

d
2

d Ŵ( d
2
)
.

To check the formula for the volume of a unit ball, note that V(2) = π and

V(3) = 2
3

π
3
2

Ŵ

(

3
2

) = 4
3
π , which are the correct volumes for the unit balls in two and

three dimensions. To check the formula for the surface area of a unit ball, note that

A(2) = 2π and A(3) = 2π
3
2

1
2

√
π

= 4π , which are the correct surface areas for the unit

ball in two and three dimensions. Note that π
d
2 is an exponential in d

2
and Ŵ

(

d
2

)

grows as the factorial of d
2
. This implies that lim

d→∞
V(d) = 0, as claimed.
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