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Introduction

This introduction reviews, summarizes, and illustrates fundamental connections

between Bayesian inference, numerical quadrature, Gausssian process regression,

polyharmonic splines, information-based complexity, optimal recovery, and game

theory that form the basis of the book. This is followed by describing a sample of the

results derived from these interplays, including those in numerical homogenization,

operator-adapted wavelets, fast solvers, and Gaussian process regression. It finishes

with an outline of the structure of the book.

1.1 Statistical Numerical Approximation

Although numerical approximation and statistical inference are traditionally seen

as entirely separate subjects, they are intimately connected through the common

purpose of making estimations with partial information. In [95], Diaconis presents

a simple but compelling example of this connection, which we now present.

1.1.1 Bayesian Numerical Approximation

Consider the problem of computing

∫ 1

0

u(t) dt (1.1)

for a given function u, e.g., with

u(t) = sin(t)et3+cos(t+t4) . (1.2)

Although u is explicitly known, it does not have a trivial primitive and (1.1) must

be approximated by evaluating u at a finite number of points (e.g., ti = i
N

, i ∈
{0,1, . . . ,N}; see Figure 1.1) and using a quadrature formula, e.g.,
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2 Introduction

Figure 1.1 Quadrature points.

Figure 1.2 �i .

∫ 1

0

u(t) dt ≈
N

∑

i=1

u(ti) + u(ti−1)

2
�t , (1.3)

with �t = 1/N .

Surprisingly, if we instead assume u to be generated by a Brownian motion Bt

and approximate
∫ 1

0
u(t) dt with the conditional expectation

E[

∫ 1

0

Bt dt | Bti = u(ti) ,∀i] , (1.4)

we rediscover the trapezoidal quadrature rule (1.3). To obtain this, switch the inte-

gral with the expected value in (1.4), i.e.

E
[

∫ 1

0

Bt dt
∣

∣Bti = u(ti) for all i
]

=
∫ 1

0

E
[

Bt

∣

∣Bti = u(ti) for all i
]

dt , (1.5)

and observe that

E
[

Bt

∣

∣Bti = u(ti) for all i
]

=
∑

i

u(ti)ψi(t) (1.6)

is the piecewise linear interpolation of u between the points t0, . . . ,tN represented

by the piecewise linear tent basis functions ψi illustrated in Figure 1.2. Moreover,

assuming u to be generated by integrals of Brownian motion yields higher-order

quadrature rules, i.e., replacing Bt by
∫ t

0
Bs ds yields cubic splines in (1.6) and

cubic splines quadrature rules in (1.4). Integrating the Brownian motion k times

yields splines and quadrature rules of order 2k + 1.
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1.1 Statistical Numerical Approximation 3

1.1.2 Bayesian Numerical Homogenization

The Bayesian approach to the discoveries of old and new quadrature rules presented

in Section 1.1.1 and in the pioneering works of Diaconis [95], Shaw [278], O’Hagan

[232, 233], and Skilling [281] has a natural generalization to partial differential

equations (PDEs) [238]. Consider, for instance, the problem of identifying accurate

basis functions for the PDE
{

− div
(

a(x)∇u(x)
)

= f (x) x ∈ �;
u = 0 on ∂�,

(1.7)

where div is the divergence operator, ∇ is the gradient, ∂� is the boundary of a

regular subset � ⊂ R
d , d ≤ 3, and a is a uniformly elliptic symmetric matrix with

entries in L∞(�).

We will now consider assuming white noise as a prior for the function f on the

right-hand side of (1.7). White noise is a type of weak Gaussian random variable

called a Gaussian field that we will describe in Definition 7.18, and in full in

Section 17.2. In this case, f being white noise amounts to the fact that for each

φ ∈ L2(�), the spatial integral
∫

�
f φ is a Gaussian random variable with a mean 0

and a variance ‖φ‖2
L2(�)

.

Assuming white noise as a prior on the right-hand side of (1.7) and conditioning

the solution u to (1.7) on (u(xi))i∈{1,...,m} (see Figure 1.3) leads to

E
[

u(x)
∣

∣u(xi), i ∈ {1, . . . ,m}
]

=
∑

i

u(xi)ψi(x), (1.8)

where the ψi are deterministic functions. When a(x) = Id , the d-dimensional

identity matrix, these ψi are the polyharmonic splines of Harder, Desmarais, and

Duchon [104, 105, 106, 156] that were originally discovered [156], thanks to the

insight of aircraft engineers seeking basis functions adapted to the bending energy

of airplane wings.

When the conductivity a is arbitrary in L∞(�), then these ψi are basis func-

tions that are adapted to the irregularities (microstructure) of the conductivity and

Figure 1.3 Left: the interpolation points. Center: a rough polyharmonic spline ψi .
Right: x-slice of ψi . Reproduced with permission from [249].

www.cambridge.org/9781108484367
www.cambridge.org


Cambridge University Press
978-1-108-48436-7 — Operator-Adapted Wavelets, Fast Solvers, and Numerical Homogenization
Houman Owhadi , Clint Scovel 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

4 Introduction

provide a generalization of polyharmonic splines to PDEs with rough coefficients,

i.e., rough polyharmonic splines [249] (see Figure 1.3), which were discovered after

a laborious process of scientific investigation.

1.1.3 Information-Based Complexity

Although this process of randomizing a perfectly known function may seem coun-

terintuitive, a natural framework for understanding it can be found in the pioneering

works of Kadane, Traub, Wasilkowsi, and Woźniakowski on information-based

complexity (IBC) [175, 306, 334], the branch of computational complexity founded

on the observation that numerical implementation requires computation with partial

information and limited resources. In IBC, the performance of an algorithm operat-

ing on incomplete information can be analyzed in the worst-case or the average-case

(randomized) setting with respect to the missing information and as observed by

Packel [252], the average case setting could be interpreted as a possible mixed strat-

egy in an adversarial game obtained by lifting a (worst-case) minmax problem to

a minmax problem over mixed (randomized) strategies.1 This observation initiates

[239] a natural connection between numerical approximation and Wald’s decision

theory [322], evidently influenced by von Neumann’s theory of games [320].

1.2 The Game Theoretic Perspective

1.2.1 Optimal Recovery

The framework of optimal recovery of Micchelli and Rivlin [218] provides a nat-

ural setting for presenting the correspondence between numerical approximation

(NA) and Gaussian process regression (GPR) from a game theoretic perspective.

Consider a Banach space B and write [·,·] for the duality product between B and

its dual space B∗. When B is infinite- or high-dimensional, one cannot directly

compute with u ∈ B but only with a finite number of features of u. The types of

features we consider here are represented as a vector


(u) :=
(

[φ1,u], . . . ,[φm,u]
)

corresponding to m linearly independent measurements φ1, . . . ,φm ∈ B∗. The

objective is to recover/approximate u from the partial information contained in the

feature vector 
(u). To quantify errors in the recovery, let

Q : B∗ → B

1 Such results for certain minmax statistical estimators have also been presented in Li [203] and Sacks and
Ylvisaker [264].
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1.2 The Game Theoretic Perspective 5

be a bijection that is symmetric and positive, in that [φ,Qϕ] = [ϕ,Qφ] and

[φ,Qφ] ≥ 0 for φ,ϕ ∈ B∗, and endow B with the quadratic norm ‖ · ‖ defined by

‖u‖2 := [Q−1u,u].

Then, using the relative error in ‖·‖-norm as a loss, the classical numerical analysis

approach is to approximate u with a minimizer v† of

min
v

max
u

‖u − v(
(u))‖
‖u‖

. (1.9)

A minimum over all possible functions of the m linear measurements is

v† =
m

∑

i=1

[φi,u]ψi, (1.10)

where the elements

ψi :=
m

∑

j=1

�−1
i,jQφj, i ∈ {1, . . . ,m}, (1.11)

of B, known as optimal recovery splines, are defined using the components �−1
i,j of

the inverse �−1 of the Gram matrix � defined by �i,j := [φi,Qφj ].

(Player I) u ∈ B

max
��
❄❄

❄❄
❄❄

❄❄
v

min
��✞✞
✞✞
✞✞
✞

(Player II)

‖u−v(
(u))‖
‖u‖

(1.12)

1.2.2 Randomized Strategies and Gamblets

The minmax problem (1.9) can be viewed as the adversarial zero sum game (1.12)

in which Player I chooses an element u of the linear space B and Player II (who does

not see u) must approximate Player I’s choice based on seeing the finite number of

linear measurements 
(u) of u.

The function (u,v) 
→ ‖u−v(
(u))‖
‖u‖ has no saddle points, so to identify a minmax

solution as a saddle point one can proceed, as in von Neumann’s game theory [320],

by introducing mixed/randomized strategies and lift the problem to probability

measures over all possible choices for Players I and II. To articulate optimal strate-

gies, observe that a centered Gaussian field ξ with covariance operator Q, denoted

ξ ∼ N (0,Q), is an isometry mapping B∗ to a space of centered Gaussian random

variables such that [φ,ξ ] ∼ N (0,‖φ‖2
∗), φ ∈ B∗, where ‖ · ‖∗ is the dual norm

of ‖ · ‖ defined by ‖φ‖∗ = supv∈B[φ,v]/‖v‖ = [φ,Qφ]
1
2 ; see, e.g., Janson [171].
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For the lifted version of the game (1.12), an optimal strategy of Player I is the

centered Gaussian field ξ ∼ N (0,Q) and an optimal strategy of Player II is the

pure (deterministic) strategy defined by its conditional expectation

v† = E
[

ξ | [φi,ξ ] = [φi,u] for all i
]

, (1.13)

which is equal to the optimal recovery solution (1.10). The optimal recovery splines

(1.11) can also be interpreted as elementary gambles/bets

ψi = E
[

ξ | [φj,ξ ] = δi,j for all j
]

, (1.14)

which we call gamblets, for playing the game. Here the optimal strategy of Player II

is a pure strategy because ‖ · ‖ is convex and the optimal strategy of Player I is

Gaussian because ‖ · ‖ is quadratic.

1.2.3 Illustrations

As an illustration of this approach, consider again the numerical quadrature problem

associated with computing
∫ 1

0
u(t) dt . Take B = H1[0,1] to be the Sobolev space of

functions whose first derivatives are square-integrable endowed with the quadratic

norm ‖u‖2 := (u(0))2 +
∫ 1

0
( du(t)

dt
)2 dt and consider the problem of recovering

u ∈ B from the incomplete measurements u(ti) (=
∫ 1

0
uφi with φi = δ(· − ti))

using the relative error in ‖ · ‖-norm as a loss. Then the Gaussian field ξ defined

by the norm ‖ · ‖ is a scaled and shifted Brownian motion and (1.13) leads to an

approximation that is optimal in both the optimal recovery (worst-case) sense and

game theoretic sense, identifying [218] the optimal recovery estimate of the integral

with the integral of the optimally estimated u. This recovers the trapezoidal rule

with
∫ 1

0
u(t) dt ≈

∫ 1

0
E

[

ξ | [φi,ξ ] = [φi,u] for all i
]

by observing that the splines

(1.14) are the usual piecewise linear tent basis functions and (1.13) is the piecewise

linear interpolation of u.

As another illustration, consider the problem of identifying accurate basis func-

tions for (1.7). Take

B =
{

u ∈ H
1
0(�)

∣

∣‖ div(a∇u)‖L2(�) < ∞
}

(1.15)

endowed with the quadratic norm

‖u‖ := ‖ div(a∇u)‖L2(�) . (1.16)

Consider the problem of recovering u ∈ B from the incomplete measurements

u(xi) using the relative error in ‖ · ‖ as a loss. Then the Gaussian field ξ defined by

the norm ‖ · ‖ is white noise and its expectation with respect to the measurements

u(xi) (1.8) leads to an approximation that is optimal in both the optimal recovery

(worst-case) sense and game theoretic sense.
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1.3 In the Setting of Sobolev Spaces 7

1.3 In the Setting of Sobolev Spaces

These interplays provide simple solutions to classical problems in numerical

approximation and Gaussian process regression, and we will illustrate this in

the setting of a linear operator

L : Hs
0(�) → H

−s(�) (1.17)

mapping the Sobolev space Hs
0(�), of functions possessing s square-integrable

derivatives that vanish on the boundary (see Section 2.1), to its dual space

H−s(�), where s,d ∈ N
∗ and � ⊂ R

d is a regular bounded domain. Assume

L to be an arbitrary symmetric (
∫

�
uLv =

∫

�
vLu), positive (

∫

�
uLu ≥ 0),

and local (
∫

�
uLv = 0 if u and v have disjoint supports) linear bijection. Write

[φ,u] :=
∫

�
φu for the duality product between φ ∈ H−s(�) and u ∈ Hs

0(�).

Let B be the Sobolev space Hs
0(�) endowed with the quadratic energy norm

‖u‖2 := [Lu,u].

When s > d/2, the Green’s function G of L is a well-defined continuous

symmetric positive definite kernel, and one can consider the centered Gaussian

process ξ with covariance function G (see Figure 1.4). Consider the problem of

finding an approximation of an unknown element u ∈ Hs
0(�) given its values at

the points x1, . . . ,xm (see Figure 1.5). Then, using the relative error in ‖ · ‖, as in

(1.9), as a loss, the minmax recovery of u is obtained in (1.13) by conditioning

the Gaussian process ξ on the values of u at the points x1, . . . ,xm, and the optimal

solution (1.10) corresponds to the formula

v†(x) =
m

∑

i,j=1

u(xi)�
−1
i,jG(xj,x), (1.18)

Figure 1.4 For s > d/2, ξ is a centered Gaussian process on � with covariance
function E[ξ(x)ξ(y)] = G(x,y), where G is the Green’s function of the
operator L.
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8 Introduction

Figure 1.5 � and x1, . . . ,xm.

Figure 1.6 Simulation of the Gaussian field ξ .

where �−1
i,j is the (i,j)th entry of the inverse �−1 of the kernel matrix � defined

by �i,j := G(xi,xj ), obtained by Kriging u with the kernel G in the reproducing

kernel Hilbert space (Hs
0(�),‖ · ‖) with reproducing kernel G.

When s ≤ d/2, the Green’s function G of L exists in the sense of distributions

and ξ ∼ N (0,L−1) is defined in a weak sense as a Gaussian field, that is, after

integration against a test function φ ∈ H−s(�),

∫

�

ξφ ∼ N (0,

∫

�2

φ(x)G(x,y)φ(y) dx dy).

Figure 1.6 shows an instantiation of ξ for the divergence form elliptic operator

L := − div(a∇·) with a uniformly elliptic, bounded, and rough conductivity a(x).

1.3.1 Numerical Homogenization

Consider the problem of identifying m basis functions that are (1) as accurate as

possible in approximating the solution space L−1(L2(�)) of L and (2) as localized
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1.3 In the Setting of Sobolev Spaces 9

as possible. This problem, known as numerical homogenization, is nontrivial

because requirements (1) and (2) are conflicting. Indeed, the optimal basis functions

for accuracy are the eigenfunctions associated with the lowest eigenvalues of L,

which are nonlocalized. As a consequence, this problem is also related to that of

identifying Wannier functions for L, i.e., linear combinations of eigenfunctions

associated with eigenvalues concentrated around a given eigenvalue such that

the resulting linear combinations are also concentrated in space, enabling a low

complexity approximation of the eigensubspaces of L.

Conditioning the Gaussian process ξ in (1.14) provides a simple solution [239,

242] to this problem, along with a generalization [238] of polyharmonic splines

[156, 249] and of variational multiscale/ localized orthogonal decomposition (LOD

basis functions [169, 208]. Given h > 0 and δ ∈ (0,1), partition � into subsets

τ1, . . . ,τm such that each τi is contained in a ball of center xi and radius δ−1h and

contains a ball of radius δh (see Figure 1.7). Let φi := 1τi
/
√

|τi | be the weighted

indicator function of τi , where |τi | is the volume of τi , or, for s > d/2, let φi :=
hd/2

δ(· − xi) be the scaled Dirac delta function located at xi . Then, the splines

ψi , defined in (1.11) and (1.14) and illustrated in Figure 1.8, achieve the same

Figure 1.7 τi and xi . h relates to the size of the τi and δ−2 to their aspect ratios.

Figure 1.8 Left: ψi . Right: x-axis slice of ψi . Reproduced from [239] (copyright
©2017 Society for Industrial and Applied Mathematics, reprinted with permission,
all rights reserved).
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accuracy as the eigenfunctions of L associated with the m lowest eigenvalues up to

a multiplicative constant2, in that

inf
v∈span{ψ1,...,ψm}

‖L−1f − v‖Hs
0(�) ≤ Chs‖f ‖L2(�),

for f ∈ L2(�) (h ≈ m− 1
d ), and they are exponentially localized, in that

‖ψi‖Hs (�\B(xi,nh)) ≤ Ch−se−n/C . (1.19)

1.3.2 Screening Effect

The preceding results on exponential decay also provide a proof of a version of the

phenomenon known, in Kriging and geostatistics, as the screening effect [288]. The

heuristic idea (for s > d/2) is that although ξ(x) and ξ(y) are significantly corre-

lated due to the slow decay of the Green’s function G(x,y) in the distance between

x and y (see Figure 1.4), they become nearly independent after conditioning on

the values of the field at the points in between. For homogeneously spaced points,

this effect is obtained from the exponential decay of the gamblets as follows. Write

Cor(X,Y |·) for the conditional correlation between random variables X and Y , and
〈

u,v
〉

:=
∫

�
uLv for the energy scalar product. Then the general identity

Cor
(

[φi,ξ ],[φj,ξ ]
∣

∣[φl,ξ ] for l �= i,j
)

= −
〈

ψi,ψj

〉

‖ψi‖‖ψj‖
,

Figure 1.9 Consider the correlation between ξ(xi) and ξ(xj ) given ξ(xl) for all
l �= i,j .

2 Throughout, write C for a constant depending only on �,s,d,δ,h,‖L‖, and ‖L−1‖.
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