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Introduction

1.1 Second Quantum Revolution Requires New Verification Techniques

We are currently in the midst of a second quantum revolution: transition from

quantum theory to quantum engineering [41]. The aim of quantum theory is to

find fundamental rules that govern the physical systems already existing in the

nature. Instead, quantum engineering intends to design and implement new sys-

tems (machines, devices, etc.) that did not exist before to accomplish some desir-

able tasks, based on quantum theory. Active areas of quantum engineering include

quantum computing, quantum cryptography, quantum communication, quantum

sensing, quantum simulation, quantum metrology and quantum imaging.

Experiences in today’s engineering indicate that it is not guaranteed that a human

designer completely understands the behaviours of the systems she or he designed,

and a bug in her or his design may cause some serious problems and even disas-

ters. So, correctness, safety and reliability of complex engineering systems have

attracted wide attention and have been systematically studied in various engineer-

ing fields. In particular, in the past four decades, computer scientists have developed

various verification techniques for correctness of both hardware and software as

well as security of communication protocols.

As is well known, human intuition is much better adapted to the classical world

than to the quantum world. This implies that human engineers will commit many

more faults in designing and implementing complex quantum systems such as

quantum computer hardware and software and quantum communication protocols.

Thus, correctness, safety and reliability problems will be even more critical in

quantum engineering than in today’s engineering. However, because of the essen-

tial differences between the classical and quantum worlds, verification techniques

developed for classical engineering systems cannot be directly used to quantum

systems. Novel verification techniques will be indispensable for the coming era of

quantum engineering and quantum technology [32].
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2 Introduction

1.2 Model-Checking Techniques for Classical Systems

Model checking is an effective automated technique that checks whether a desired

property is satisfied by a system, for example, a computing or communication

system. The properties that are checked are usually specified in a logic, in par-

ticular, temporal logic; typical properties are deadlock freedom, invariants, safety

and request–response properties. The systems under checking are mathematically

modelled as, for example (finite-state) automata, transition systems, Markov chains

and Markov decision processes [7, 35].

Model checking has become one of the dominant techniques for verification

of computer (hardware and software) systems 30 years after its inception. Many

industrial-strength systems have been verified by employing model-checking tech-

niques. Recently, it has also successfully been used in systems biology; see [68] for

example.

With quantum engineering and quantum technology emerging, a question then

naturally arises: Is it possible to use model-checking techniques to verify correct-

ness and safety of quantum engineering systems and if so, how?

1.3 Difficulty in Model Checking Quantum Systems

Unfortunately, it seems that the current model-checking techniques cannot be

directly applied to quantum systems because of some essential differences between

the classical world and the quantum world. To develop model-checking tech-

niques for quantum systems, the following three problems must be systematically

addressed:

• System modelling and property specification: The classical system modelling

method cannot be used to describe the behaviours of quantum systems, and the

classical specification language is not suited to formalise the properties of quan-

tum systems to be checked. So, we need to carefully and clearly define a con-

ceptual framework in which we can properly reason about quantum systems,

including formal models of quantum systems and formal description of temporal

properties of quantum systems.

• Quantum measurements: Model checking is usually applied to check long-term

behaviours of the systems. But to check whether a quantum system satisfies a

certain property at a time point, one has to perform a quantum measurement on

the system, which can change the state of the system. This makes studies of the

long-term behaviours of quantum systems much harder than those of classical

systems [22, 23, 60].

• Algorithms: The state spaces of the classical systems that model-checking algo-

rithms can be applied to are usually finite or countably infinite. However, the
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1.4 Current Research on Model Checking of Quantum Systems 3

state spaces of quantum systems are inherently continuous even when they are

finite dimensional. To develop algorithms for model checking quantum systems,

we have to exploit some deep mathematical properties of the systems so that

it suffices to examine only a finite number of (or at most countably infinitely

many) representative elements, for example, those in an orthonormal basis, of

their state spaces. Also, a linear algebraic structure always resides in the state

space of a quantum system. So, an algorithm checking a quantum system should

be carefully developed so that the linear algebraic structure is nicely preserved

and fully exploited.

1.4 Current Research on Model Checking of Quantum Systems

Despite the difficulties discussed in the previous section, quite a few model-

checking techniques for quantum systems have been developed in the past 10 years.

The earliest work mainly targeted checking quantum communication protocols:

• Taking the probabilism arising from quantum measurements into account, [54]

used the probabilistic model-checker PRISM [75] to verify the correctness of

quantum protocols, including superdense coding, quantum teleportation and

quantum error correction.

• A branching-time temporal extension (called quantum computation tree logic

or QCTL for short) of exogenous quantum propositional logic [88] was intro-

duced and then the model-checking problem for this logic was studied in [8, 9],

with verification of the correctness of quantum key distribution BB84 [15] as an

application.

• A linear temporal extension QLTL of exogenous quantum propositional logic

[88] was then defined and the corresponding model-checking problem was inves-

tigated in [87].

• Model-checking techniques were developed in [38, 39] for quantum communi-

cation protocols modelled in process algebra CQP (Communicating Quantum

Processes) [56]. The checked properties are specified by the quantum computa-

tion tree logic QCTL defined in [8].

• A model checker for quantum communication protocols was also developed in

[55, 57, 96], where the checked properties are specified by QCTL [8] too, but

only the protocols that can be modelled as quantum circuits expressible in the

stabiliser formalism [59] were considered. In [5, 6], this technique was extended

beyond stabiliser states and used to check equivalence of quantum protocols.

A research line pursued by the authors and their collaborators is to develop

model-checking techniques that can be used not only for quantum communication
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4 Introduction

protocols but also for quantum computing hardware and software and other quan-

tum engineering systems:

• In retrospect, our research on model checking quantum systems stemmed from

termination analysis of quantum programs. The termination problem of quantum

loop programs with unitary transformation as loop bodies (in a finite-dimensional

state Hilbert space) was first examined in [118]. The semantics of this class of

quantum programs can be modelled by quantum automata. The main results of

[118] were generalised in [123] to quantum loops with general quantum opera-

tions (or super-operators) as loop bodies by introducing quantum Markov chains

as their semantic models. These researches naturally motivated us to the studies

of model checking quantum systems, because termination can be seen as a kind

of reachability, which is central to model-checking algorithms.

• The model-checking problem for quantum automata was first considered in

[119], where closed subspaces of the state Hilbert space are used as the atomic

propositions about the behaviour of the system, following the basic idea of

Birkhoff-von Neumann quantum logic, and the checked linear-time properties

are defined as infinite sequences of sets of atomic propositions. Furthermore,

decidability or undecidability of several reachability problems (eventually

reachable, globally reachable, ultimately forever reachable and infinitely often

reachable) for quantum automata were proved in [82].

• The reachability problem of quantum Markov chains was first investigated in

[123], where an algorithm for computing the reachable space of a quantum

Markov chain was presented and applied to termination analysis of concurrent

quantum programs. A more systematic study in this direction was carried out

in [120] by developing a new graph theory in Hilbert spaces; in particular, an

algorithm for computing several kinds of reachability probabilities of quantum

Markov chains was found based on the BSCC (bottom strongly connected

components) decomposition of their state Hilbert spaces, and undecidability of

some other reachability problems were proved. The same problems for quantum

Markov decision processes were studied in [121].

• The notion of a super-operator-valued Markov chain was introduced in [51] as

a higher-level model of quantum programs and quantum cryptographic proto-

cols, where the (classical) control flow of a quantum program is depicted as a

(classical) directed graph, but each edge is associated with a super-operator that

describes one step of quantum computation. A corresponding computation tree

logic (CTL) was also defined, and algorithms for checking CTL properties of

super-operator-valued Markov chains are developed. Furthermore, the reachabil-

ity of the recursive extension of super-operator-valued Markov chains was studied

in [52].
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1.5 Structure of the Book 5

1.5 Structure of the Book

This book is a systematic exposition of the currently existing principles and algo-

rithms for model checking quantum systems. The remainder of this book is divided

into the following chapters:

• Chapters 2 and 3 are the preliminary part of this book. For convenience of the

reader, we briefly review model checking in Chapter 2, from mathematical models

of systems to temporal logics for specifying properties of systems and basic

model-checking algorithms. In Chapter 3, we review the basics of quantum theory

needed in the subsequent chapters, including static and dynamic descriptions of

a quantum system and quantum measurements.

• Chapter 4: From this chapter on, we develop the techniques for model checking

quantum systems step by step, from a simple model of quantum systems to more

and more complicated ones.

This chapter starts from defining linear time properties of quantum systems

and then focuses on the study of a special linear time property, namely reach-

ability of quantum automata, in which the system’s transition is modelled as a

unitary transformation that is a discrete-time description of the dynamics of a

closed quantum system.

• Chapter 5: In this chapter, we consider reachability problems of quantum

Markov chains and quantum Markov decision processes, which, as suggested

by their names, are the quantum counterparts of Markov chains and Markov

decision processes. Their dynamics is described as a super-operator rather than

a unitary transformation. We first introduce some necessary mathematical tools,

in particular graph theory in Hilbert spaces, and then present several algorithms

solving these reachability problems.

• Chapter 6: In this chapter, we first define the notion of a super-operator-valued

Markov chain (SVMC) and both a computation tree logic (CTL) and a linear

temporal logic (LTL) for specifying properties of SVMCs. The majority of this

chapter is devoted to introducing a series of algorithms for checking CTL or LTL

properties of SVMCs.

• Chapter 7: This is the concluding chapter, where we discuss some possible

improvements and potential applications of the model-checking techniques for

quantum systems introduced in this book and point out several directions for the

further developments of this area.

• Appendices: For readability, the proofs of some technical lemmas are omitted in

Chapters 4–6. But we provide these proofs in the appendices for the readers who

are interested in them.
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Basics of Model Checking

Model checking is an algorithmic technique for verifying certain properties of

(mainly) finite state systems. The systems are usually modelled as a transition

system (or a finite state automaton, a labelled graph). The properties are speci-

fied in a temporal logic. The checking algorithm is based mainly on systematic

inspection of all reachable states of the model. Because of its complete automa-

tion and ability of finding counterexamples, model checking has been successfully

and widely adopted in the information and communications technology industries.

On the other hand, it has a major drawback, namely the state space explosion

problem – the number of states can grow exponentially in the number of vari-

ables. Several techniques have been introduced to mitigate this drawback, includ-

ing symbolic model checking, bounded model checking, abstraction and partial

order reduction. In real-world applications, model checking is facing the validation

problem that all branches of science have: are the model and the properties being

checked a proper and adequate description of the system’s behaviour?

Model checking was first proposed for verification of classical non-probabilistic

systems and then extended for probabilistic systems. In this book, we will further

extend the technique of model checking for quantum systems. As preliminaries, this

chapter introduces basics of model checking for both classical non-probabilistic

and probabilistic systems.

The ideas and techniques introduced in this chapter cannot be directly applied to

quantum systems, but they provide us with a guideline to develop an appropriate

framework and to ask the right questions in the later chapters.

2.1 Modelling Systems

First of all, we need a formal model describing the possible behaviour of the system

under consideration. One of the most commonly used models is a transition system.

6
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2.1 Modelling Systems 7

Definition 2.1 A transition system is a 6-tuple

M = (S,Act, → ,I,AP,L),

where

(i) S is a (finite) set of states;

(ii) I ⊆ S is a set of initial states;

(iii) Act is a set of (the names of) actions;

(iv) → ⊆ S × Act × S is a transition relation;

(v) AP is a set of atomic propositions;

(vi) L : S → 2AP is a labelling function, where 2AP stands for the power set of AP,

that is, the set of all subsets of AP.

Several ingredients in the foregoing definition deserve careful explanation:

• (s,α,s ′) ∈ →, usually written as s
α

→ s ′, means that the action α causes the

system’s state to change from s to s ′.

• The transition relation → can be equivalently represented by a family of transi-

tion relations indexed by action names:

→ =
{

α
→: α ∈ Act

}

,

where for each α ∈ Act,

α
→ =

{

(s,s ′) : s
α

→ s ′
}

⊆ S × S

is the set of transitions enabled by action α.

• Elements of AP are atomic propositions chosen to describe the basic properties

of the system’s states.

• For each s ∈ S, L(s) denotes the set of those atomic propositions that hold in

state s.

For each s ∈ S and α ∈ Act, let

post(s,α) = {s ′ ∈ S : s
α

→ s ′}

be the set of α-successors of s. We write |X| for the number of elements in X.

Definition 2.2 A transition system M is called deterministic if

(i) there is at most one initial state; that is, |I | ≤ 1;

(ii) for each action α, each state s has at most one α-successor; that is, it holds that

|post(s,α)| ≤ 1 for every s ∈ S and α ∈ Act.

Otherwise, it is non-deterministic.

Definition 2.3 A state s ∈ S is called a terminal state of the transition system M if

it has no outgoing transition; that is, post(s,α) = ∅ for every α ∈ Act.
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8 Basics of Model Checking

A transition system M runs in the following way: it starts from some initial state

s0 ∈ I and then evolves according to the transition relation →. Formally, we have:

Definition 2.4 A path in the transition system M is a (finite or infinite) sequence

π = s0s1 . . . si−1si . . . of states such that

s0
α1
→ s1

α2
→ · · · si−1

αi
→ si

αi+1
→ · · · ,

where si−1
αi
→ si is a transition in M for each i ≥ 1.

Note that for a non-deterministic transition system, the initial state s0 and the

next state si at the ith step in Definition 2.4 may be chosen non-deterministically.

For a path π = s0s1 . . . and i ≥ 0, we write

π[i] = si, π[i) = sisi+1 . . .

for the (i + 1)th state si and the suffix of π starting in state si , respectively.

Definition 2.5 A state s ∈ S is called reachable in M if there is a path π =

s0s1 . . . sn−1sn in M starting at an initial state s0 ∈ I and ending at sn = s.

As stated at the beginning of this chapter, model checking is done by inspecting

all reachable states of the system. This central notion of reachable state will there-

fore be generalised into various quantum systems, and computing (the space of)

reachable states of a quantum system will be one of the central issues discussed in

this book.

2.2 Temporal Logics

We also need a formal language to specify the required properties of the system.

Since we are interested in its dynamic properties, a temporal logic(al language) is

often adopted, which is an extension of propositional logic with some operators

that can describe the behaviour over time. Mainly, two types of temporal logics are

used in model checking. They are chosen according to two different views on the

notion of (discrete) time.

2.2.1 Linear Temporal Logic

Linear temporal logic (LTL) is employed to describe linear-time properties. The

linearity means:

• Each time point has a unique possible future.

We assume that the reader is familiar with propositional logic. The LTL language

is an expansion of propositional logical language. Its alphabet consists of
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2.2 Temporal Logics 9

• A set AP of atomic propositions, ranged over by meta-variables a,a1,a2, . . .

• Propositional connectives: ¬ (not), ∧ (and)

• Temporal operators: O (next), U (until)

It is worth noting that a set AP of atomic propositions is also assumed in a

transition system (see Definition 2.1). Indeed, AP is the point where a temporal

logical formula is connected to a transition system. More precisely, the labelling

function L : S → 2AP in the transition system gives an interpretation of atomic

propositions:

Atomic proposition a ∈ AP is true in state s ⇔ a ∈ L(s). (2.1)

The LTL formulas are generated from atomic propositions by a finite number of
applications of connectives ¬,∧ and temporal operators O,U .

Definition 2.6 (Syntax) The LTL formulas over AP are defined by the grammar

ϕ ::= a | ¬ϕ | ϕ1 ∧ ϕ2 | Oϕ | ϕ1Uϕ2.

The meanings of ¬ϕ and ϕ1 ∧ ϕ2 are the same as in propositional logic. Intu-

itively, Oϕ is true at the current point of time if ϕ is true at the next, ϕ1Uϕ2 holds

at the current time point if there is a future point of time at which ϕ2 is true and ϕ1

holds at all moments from the current to that future point.

The following abbreviations are often used to simplify the presentation of LT

formulas:

true : = a ∨ ¬a;

ϕ1 ∨ ϕ2 : = ¬(¬ϕ1 ∧ ¬ϕ2);

♦ϕ : = true Uϕ;

�ϕ : = ¬♦¬ϕ.

Again, the meanings of true and ϕ1 ∨ ϕ2 are the same as in propositional logic.

Moreover, we can see that ♦ϕ means that ϕ will be true eventually (sometime in the

future), and �ϕ means that ϕ will be true always (from now on forever). It is worth

noting that the derived formulas introduced earlier do not increase the expressive

power of LTL, but LTL formulas can often be shortened using these abbreviations.

Example 2.7

(i) �♦ϕ: for every time point i, there exists some j ≥ i such that ϕ is true at time

point j ; that is, ϕ holds infinitely often.

(ii) ♦�ϕ: there is a time point i such that ϕ is true at all time points j ≥ i; that is,

ϕ holds eventually forever.

(iii) �(request → ♦response): every request will eventually have a response.
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10 Basics of Model Checking

The semantics of the logic is obtained by extending interpretation (2.1) of atomic

propositions to all LTL formulas.

Definition 2.8 (Semantics) Let M = (S,Act, → ,I,AP,L) be a transition

system, π a path in M, s ∈ S and ϕ an LTL formula over AP. Then

(i) The satisfaction π |� ϕ is defined by induction on the structure of ϕ:

(a) ϕ = a: π |� ϕ iff a ∈ L(π [0]);

(b) ϕ = ¬ϕ′: π |� ϕ iff π 
|� ϕ′;

(c) ϕ = ϕ1 ∧ ϕ2: π |� ϕ iff π |� ϕ1 and π |� ϕ2;

(d) ϕ = Oϕ′: π |� ϕ iff π [1) |� ϕ′;

(e) ϕ = ϕ1Uϕ2: π |� ϕ iff there exists i ≥ 0 such that π [i) |� ϕ2 and π [j) |�

ϕ1 for all 0 ≤ j < i.

(ii) s |� ϕ iff π |� ϕ for all paths π starting in s.

(iii) M |� ϕ iff s0 |� ϕ for all initial states s0 ∈ I .

Essentially, Definition 2.8 is a formal description of the intuitive explanations of

LTL formulas given after Definition 2.6.

Note that in (2.1), we directly considered whether a state s satisfies an atomic

proposition a. In Definition 2.8, however, the satisfaction of a general LTL formula

by a state needs to be formulated in two steps. In clause (i), we first consider

whether an LTL formula ϕ is satisfied by a path which represents the notion of

linear time, since ϕ may contain some temporal operators. Then in clause (ii), the

satisfaction of an LTL formula by a state can be defined in terms of satisfaction by

all paths starting from the state.

Let us further carefully explain the sub-clauses of clause (i) as follows:

• Sub-clause (a) is indeed a restatement of (2.1), with s being the initial state π[0]

of path π .

• The interpretations of connectives ¬,∧ in sub-clauses (b) and (c) are the same as

in the standard propositional logic.

• Sub-clause (d) means that Oϕ′ is satisfied by path π iff ϕ′ is satisfied by the tail

π[1) of π starting at the next point of time.

• Sub-clause (e) states that ϕ1Uϕ2 is satisfied by π iff ϕ2 is satisfied at some point

i of time in path π , and before that point, ϕ1 is satisfied.

Example 2.9 Consider transition system M = (S,Act, → ,I,AP,L) depicted in

Figure 2.1, where

• S = {s1,s2,s3};

• Act = {F,B,C};

• s1
F
→ s2

F
→ s3, s2

B
→ s1 and s3

C
→ s3;
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