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Categories

In this chapter we review some basics of category theory and representation

theory. We will extend the representation theory of algebras to categories and

discuss Morita equivalence in this context. Most of the material covered can

be found in every standard book about category theory or representation theory

[176, 148, 258]. We include it to fix notation and as a reference because in later

chapters we will expand this formalism to the world of A∞-categories.

1.1 Categories

Definition 1.1 A category C consists of a collection of objects Ob(C) and for

each pair of objects A, B ∈ Ob(C) there is a set C(A, B). This set is the hom-

space from A to B and its elements are called morphisms. They satisfy the

following properties:

• morphisms can be composed: if φ ∈ C(A, B) and ψ ∈ C(B,C) then ψφ ∈

C(A,C),

• the composition is associative: (φψ)χ = φ(ψχ) whenever it is defined,

• for each object A there is an identity morphism 1A ∈ C(A, A) such that for

φ ∈ C(A, B) we have φ = φ1A = 1Bφ.

A morphism φ ∈ C(A, B) is called an isomorphism if there is a ψ ∈ C(B, A) such

that φψ = 1B and ψφ = 1A. In that case, A and B are called isomorphic.

Example 1.2 The standard example of a category is Sets: its objects are sets

and morphisms are maps between sets. Two sets are isomorphic if they have

the same cardinality.
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4 Categories

Example 1.3 (Examples from algebra) For every algebraic structure we

can construct a corresponding category; its objects are sets equipped with

this algebraic structure and its morphisms are maps preserving this structure.

Examples of this construction are Groups, Fields and Rings.

Two important categories we will often use are VECT(k) and vect(k),

which are the categories whose objects are all k-vector spaces and all finite-

dimensional k-vector spaces and whose morphisms are linear maps.

Example 1.4 (Examples from geometry) In topology the category Top

consists of all topological spaces with continuous maps as morphisms, while

Top∗ consists of pairs of a topological space and a point in this space, together

with morphisms that map the selected points to each other.

Similarly, in differential geometry we can construct Man (and Man∗) whose

objects are (pointed) manifolds and whose morphisms are smooth maps (that

identify the selected points).

Every topological space X can also be considered as a category Open(X),

whose objects are the open subsets and whose morphisms are the inclusions.

All these examples are categories for which the objects are sets with a

special structure and the morphisms are maps between these sets preserving

the structure. There are also other interesting categories that do not fall into

this class.

Example 1.5 The fundamental groupoid of a topological space Π1(X) is the

category for which the objects are the points in X and the morphisms are

homotopy classes of paths between points. Note that if X is connected then

Π1(X)(p, p) is by definition equal to the fundamental group π1(X, p).

1.2 Functors

Definition 1.6 A covariant functor F : C→ D consists of maps F : Ob(C)→

Ob(D) and F : C(A, B) → D(F (A),F (B)) such that F (ψφ) = F (ψ)F (φ) and

F (1A) = 1F (A).

Example 1.7 Examples of covariant functors are forgetful functors, which

consider the same objects and maps but forget some of the structure: F :

Groups→ Sets : (G, ∗) 7→ G or F : Rings→ Groups : (R,+,×) 7→ (R,+).

Example 1.8 Other functors create more structure, such as U : Sets →

VECT(k) : S 7→ 〈S 〉 which associates to each set a vector space with as basis

that set. Because a linear map is determined by the images of the basis, the

www.cambridge.org/9781108483506
www.cambridge.org


Cambridge University Press
978-1-108-48350-6 — A Gentle Introduction to Homological Mirror Symmetry
Raf Bocklandt 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.2 Functors 5

functor turns each map between generators into a linear map between vector

spaces.

The group ring construction is also an example of this: it associates to each

group its group ring, consisting of all linear combinations of group elements.

This functor turns each group morphism into a ring morphism by linearizing it.

Example 1.9 A more fancy example of a covariant functor is the fundamental

group, which goes from pointed topological spaces to groups,

π1 : Top∗ → Groups : (X, p) 7→ π1(X, p).

If f : (X, p) → (Y, q) is a continuous map, we set π1( f ) : π1(X, p) →

π1(Y, q) : [ℓ] 7→ [ f ℓ] where ℓ : [0, 1] → X is a loop starting at p ∈ X and

[ℓ] is its corresponding element in the fundamental group.

Definition 1.10 A contravariant functor F : C → D consists of maps

F : Ob(C)→ Ob(D) and F : C(A, B)→ D(F (B),F (A)) such that

F (ψφ) = F (φ)F (ψ) and F (1A) = 1F (A).

If we define the opposite category Cop to be the category with the same objects

but

Cop(V,W) := C(W,V)

and the multiplication reversed, then a contravariant functor from C→ D is the

same as a covariant functor from Cop → D.

Example 1.11 The basic example of a contravariant functor is the dual of a

vector space

−∗ : vect(k)→ vect(k) : V 7→ V∗ := Homk (V,k).

This functor is contravariant because if f : V → W is a linear map, the

corresponding dual map f ∗ : W∗ → V∗ : φ 7→ φ ◦ f goes in the opposite

direction.

Example 1.12 Another example is the construction that associates to every

manifold its ring of smooth functions

C∞ : Man→ Rings : M 7→ C∞(M) := { f : M→ R | f is smooth}.

Definition 1.13 A covariant or contravariant functor F : C → D is called

full, faithful or fully faithful if all the maps F : C(A, B) → D(F (A),F (B))

are surjective, injective or bijective. A fully faithful covariant or contravariant

functor is called an equivalence or antiequivalence if for each B ∈ Ob(D) there
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6 Categories

is an A ∈ Ob(C) with F (A) isomorphic to B. This last property is also called

essentially surjective.

Example 1.14 Define the category mat(k) as follows:

Ob(mat(k)) := {0, 1, 2, . . .} and mat(n,m) :=Matm×n(k).

This category is equivalent to the category of vector spaces through the functor

F : mat(k)→ vect(k) : n 7→ k
n,

F : mat(n,m)→ vect(kn,km) : A 7→ (φ : x 7→ Ax),

which is fully faithful because every linear map between k
n and k

m is

represented by a unique matrix. It is also essentially surjective because every

finite-dimensional vector space is isomorphic to k
n for some n.

The main idea is that equivalent categories describe two types of mathemat-

ical objects which behave the same. All constructions between one of these

types of objects and their morphisms can be translated to the other setting and

vice versa. In our particular situation it means that working with vector spaces

and linear maps is the same as working with matrices.

Example 1.15 The functor −∗ is an antiequivalence for the category of all

finite-dimensional vector spaces vect(k), but not for the category VECT(k) of

all vector spaces over k. This is because the dual of an infinite-dimensional

vector space never has a countable basis, so −∗ is not essentially surjective.

1.3 Natural Transformations

The final main ingredient of category theory is natural transformations. They

can be seen as morphisms between functors.

Definition 1.16 A natural transformation η : F →G between two covari-

ant functors F ,G : C→ D is a collection of D-morphisms (ηX : F (X) →

G(X))X∈Ob C such that for every morphism f : X → Y in C we have ηY ◦F ( f ) =

G( f ) ◦ ηX .

Example 1.17 The standard example of a natural transformation is the one

between the identity functor 1 : vect(k) → vect(k) and the double dual of a

vector space −∗∗ : vect(k)→ vect(k):

ηX : X → X∗∗ : v 7→ (evv : X∗ → k : φ 7→ φ(v)) .

This is the mathematical way of saying that a finite-dimensional vector

space and its double dual are canonically isomorphic: there is a standard
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1.4 Linear Categories 7

isomorphism between a vector space and its double dual. This is not the case

for the single dual: although a finite-dimensional vector space is isomorphic to

its dual, to construct an actual isomorphism we need some extra data (like a

basis).

Example 1.18 It is also easy to check that every natural transformation of

the identity functor 1 : vect(k) → vect(k) to itself is a global rescaling by a

common factor λ ∈ k:

(νλ)X : X → X : v 7→ λv.

Indeed, if ν : 1 → 1 is a natural transformation then it acts by rescaling on

the one-dimensional vector space k: νk : k → k : x → λx. If v is an element

of a vector space X then there is a linear map f : k → X : 1 7→ v, so νX(v) =

νX( f (1)) = f (νk (1)) = f (λ) = λv.

1.4 Linear Categories

If we fix a field k we can consider k-linear categories.

Definition 1.19 A category C is called a k-linear category if all hom-spaces

are k-vector spaces and the multiplication is bilinear. A functor between two

k-linear categories is called k-linear if the maps between the hom-spaces

are k-linear. An object X in a k-linear category C is called a zero object if

for all Y ∈ Ob(C) we have C(X,Y) = C(Y, X) = 0.

Unless it is specifically stated otherwise, a functor between two k-linear

categories will always be assumed to be k-linear. This is not a big restriction

because almost all natural functors are k-linear.

Example 1.20 There are many examples of k-linear categories: VECT(k),

vect(k), mat(k). For any k-algebra A, we have k-linear categories

• MOD-A: the category of all right A-modules,

• Mod-A: the category of all finitely generated right A-modules, and

• mod-A: the category of all finite-dimensional right A-modules.

The zero object in these categories is the zero-vector space with trivial A-

action. The hom-spaces in these categories are often denoted by HomA(M,N)

instead of MOD-A(M,N). The same triplet exists for left modules as well:

A-MOD, A-Mod and A-mod.
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8 Categories

Example 1.21 Any k-algebra A can also be considered as a k-linear category

A with one object and A( , ) = A. On the other hand, it is also possible to

consider a category C with more than one object as an algebra: we can take the

direct sum of all hom-spaces

C :=
⊕

X,Y∈Ob(C)

C(X,Y).

The product of two morphisms is composition if they are composable and zero

otherwise. Note that for each object X, the unit 1X gives an idempotent in the

algebra. If there is a finite number of objects the sum of all these idempotents

is the unit in the algebra, but if there are infinitely many objects this will be an

algebra without a unit.

Note that these operations are not inverses. If we start with a category with

a finite number of objects, turn it into an algebra and then back into a category,

this new category is not equivalent to the original. There is however a weaker

sense in which they are equivalent. This will be explored in the next sections.

1.5 Modules

Given a k-algebra A, a left module consists of a vector space V and an algebra

morphism ρ : A → Homk (V,V). If we consider A as a category A with one

object, this is precisely a covariant functor from A to Vect(k). A morphism

between two modules is a linear map f : V → W such that for all a ∈ A we

have f ◦ ρV (a) = ρW (a) ◦ f , in which we recognize a natural transformation

between the functors ρV and ρW .

Definition 1.22 If C is a (k-linear) category we define its left module category

C-MOD as the category with as objects the (k-linear) functors ρ : C → VECT(k)

and as morphisms the natural transformations between them. An object of

C-MOD is called a left C-module. The right module category MOD-C is the

category of contravariant functors from C to VECT(k). The objects are right

C-modules.

Example 1.23 If C is a k-linear category with a finite number of objects and

C is the corresponding algebra then we can turn every classical left C-module

M into a functor FM : C → VECT(k) that maps an object X to the vector space

FM := 1X M and every morphism φ : X → Y to FM(φ) : 1X M → 1Y M : m 7→

φm.

Vice versa, every C-module F : C → VECT(k) can be seen as a classical

module of the algebra C =
⊕

X,Y∈Ob C
C(X,Y) by taking the direct sum MF :=⊕

X∈Ob C
F (X) and letting F (φ) act on the appropriate components.
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1.5 Modules 9

Example 1.24 Many classical constructions in geometry are actually mod-

ules of categories.

• Let C∞(M) denote the space of smooth functions on a manifold M. If we

forget the ring structure on C∞(M), the functor C∞ : Man→ VECT(R) can be

seen as a right module of Man. Similarly, the differential n-forms Ωn and the

de Rham cohomology Hn
dR

can also be seen as right modules of Man.

• If V is a vector bundle over a topological space X then the section functor

Γ(V ,−), which maps every open U to its space of sections Γ(V ,U),

is a contravariant functor from Open(X) to VECT(R) and hence a right

module of Open(X). In general, a right module of Open(X) is also called

a presheaf of X.

• A local system on a topological space X can be seen as a module of the

fundamental groupoid Π1(X): it assigns to each point in X a vector space

and to each path a linear map that only depends on the homotopy class. In

other words, it is a vector bundle with a flat connection.

Modules of categories behave in all respects like modules of rings and

all familiar concepts hold. We say that a morphism between C-modules is

injective, surjective or bijective if its natural transformation is respectively

injective, surjective or bijective in every object of C.

For every morphism we can also define its kernel and cokernel by looking

at the kernel and cokernel of the natural transformation in every object. Other

notions such as short exact sequences and direct sums and summands can also

be defined objectwise.

Example 1.25 The exterior derivative can be viewed as a Man-module

morphism dn : Ωn → Ωn+1 and Hn
dR
= Ker dn/ Im dn−1 as right Man-modules.

For more details see Section 2.2.3.

Just as we can consider an algebra as a module over itself, we can see every

object in a k-linear category as a module of this category: to X ∈ Ob(C) we

associate the contravariant functor C(−, X). A morphism between two objects

φ : X → Y will give a natural transformation φ ◦ − : C(−, X) → C(−,Y) : f 7→

φ ◦ f . Therefore we have a covariant functor Y : C → MOD-C. This functor is

called the Yoneda embedding.

Lemma 1.26 (Yoneda lemma) The functor Y : C→ MOD-C is fully faithful.

Yoneda’s lemma implies that C can be seen as a full subcategory of MOD-C.

In a similar way Cop embeds in the left module category C-MOD.
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10 Categories

1.6 Morita Equivalence

Sometimes nonisomorphic algebras can have the equivalent module categories.

This phenomenon is called Morita equivalence and has been well studied

[9, 151].

Example 1.27 If A is an algebra we say that e ∈ A is an idempotent if e2
= e

and it is a full idempotent if additionally AeA = A. For a full idempotent e we

can construct an algebra B = eAe = HomA(eA, eA) and a functor

E : MOD-A→ MOD-B : M 7→ Me with E( f : M → N) = f |Me.

This functor is fully faithful because we can reconstruct f from f |Me as M =

MAeA = (Me)A. It is also essentially surjective because

E(N ⊗B eA) = (N ⊗B eA)e = N ⊗B eAe = N ⊗B B � N.

Therefore, E is an equivalence between MOD-A and MOD-B.

Example 1.28 The elementary matrix E11 with a 1 in the upper-left corner

is a full idempotent for Matn(A) = HomA(A⊕n, A⊕n), so the latter is Morita

equivalent with A.

The previous examples indicate that there are two processes to make Morita

equivalences: taking endomorphism rings of certain direct summands (eA) and

direct sums (A⊕n). These processes are sufficient:

Theorem 1.29 (Morita [177]) Two algebras A and B are Morita equivalent

if and only if B � e Matn(A)e for some full idempotent matrix e ∈ Matn(A).

These ideas generalize to Morita equivalences for k-linear categories as

well.

Definition 1.30 Two categories C and D are called Morita equivalent if MOD-C

and MOD-D are equivalent categories.

Definition 1.31 The additive completion Add C of a k-linear category C is

the category with objects that are finite formal direct sums of objects in C,

including the zero sum. We write such objects as (A1⊕· · ·⊕An) with Ai ∈ Ob(C)

and

Add C(A1 ⊕ · · · ⊕ An, B1 ⊕ · · · ⊕ Bm) :=
⊕

i, j

C(Ai, B j),

where the right-hand side is a direct sum of k-vector spaces. The composition

of morphisms is the bilinear extension of the composition in C. Note that C is a

full subcategory of Add C.

www.cambridge.org/9781108483506
www.cambridge.org

