1

2

Cambridge University Press 978-1-108-48343-8 — Biological and Computer Vision Gabriel Kreiman Table of Contents <u>More Information</u>

Contents

List o	f Figures	page xi
Prefa	ce	XV
Ackne	owledgments	xiz
List o	f Abbreviations	XX
Introd	luction to the World of Vision	1
1.1	Evolution of the Visual System	2
1.2	The Future of Vision	2
1.3	Why Is Vision Difficult?	4
1.4	Four Key Features of Visual Recognition	e
1.5	The Travels and Adventures of a Photon	8
1.6	Tampering with the Visual System	11
1.7	Functions of Circuits in the Visual Cortex	12
1.8	Toward the Neural Correlates of Visual Consciousness	14
1.9	Toward a Theory of Visual Cognition	16
1.10	Summary	18
Furth	er Reading	19
The T	ravels of a Photon: Natural Image Statistics and the Retina	20
2.1	Natural Images Are Special	20
2.2	Efficient Coding by Allocating More Resources Where They Are	
	Needed	22
2.3	The Visual World Is Slow	23
2.4	We Continuously Move Our Eyes	24
2.5	The Retina Extracts Information from Light	20
2.6	It Takes Time for Information to Reach the Optic Nerve	32
2.7	Visual Neurons Respond to a Specific Region within the Visual Field	32
2.8	The Difference-of-Gaussians Operator Extracts Salient Information and	1
	Discards Uniform Surfaces	34
2.9	Visual Neurons Show Transient Responses	35
2.10	On to the Rest of the Brain	36
2.11	Digital Cameras versus the Eye	38
2.12	Summary	39
Furth	er Reading	39
		vi

viii	Conte	nts	
3	The F	Phenomenology of Seeing	41
	3.1	What You Get Ain't What You See	41
	3.2	Perception Depends on Adequately Grouping Parts of an Image through	
		Specific Rules	42
	3.3	The Whole Can Be More than the Sum of Its Parts	44
	3.4	The Visual System Tolerates Large Image Transformations	45
	3.5	Pattern Completion: Inferring the Whole from Visible Parts	48
	3.6	Visual Recognition Is Very Fast	49
	3.7	Spatial Context Matters	53
	3.8	The Value of Experience	54
	3.9	People Are Approximately the Same Wherever You Go, with Notable	
		Exceptions	57
	3.10	Animals Excel at Vision Too	58
	3.11	Summary	60
	Furth	er Reading	61
4		ing and Altering Visual Percepts through Lesions and Electrical	
		Ilation	62
	4.1	Correlations and Causality in Neuroscience	63
	4.2	A Panoply of Lesion Tools to Study the Functional Role of Brain	
		Areas in Animals	63
	4.3	Some Tools to Study the Functional Role of Brain Areas in Humans	67
	4.4	Partial Lesions in the Primary Visual Cortex Lead to Localized	
		Scotomas	69
	4.5	What and Where Pathways	71
	4.6	Dorsal Stream Lesions in the <i>Where</i> Pathway	72
	4.7	The Inferior Temporal Cortex Is Critical for Visual Object Recognition	70
	1.0	in Monkeys	73
	4.8	Lesions Leading to Shape Recognition Deficits in Humans	74
	4.9	Invasive Electrical Stimulation of the Human Brain	78
	4.10	Electrical Stimulation in the Primate Visual Cortex	82
	4.11 Furth	Summary er Reading	85 86
_			
5		ntures into <i>Terra Incognita</i> : Probing the Neural Circuits along the al Visual Stream	87
	5.1	About the Neocortex	87
	5.2	Connectivity to and from the Primary Visual Cortex	89
	5.3	The Gold Standard to Examine Neural Function	91
	5.4	Neurons in the Primary Visual Cortex Respond Selectively to Bars	
		Shown at Specific Orientations	92
	5.5	Complex Neurons Show Tolerance to Position Changes	93
	5.6	Nearby Neurons Show Similar Properties	96
		· •	

		Contents	ix
	5.7	Quantitative Phenomenological Description of the Responses in the	0.6
	5.0	Primary Visual Cortex	96
	5.8	A Simple Model of Orientation Selectivity in the Primary Visual Cortex	97
	5.9	Many Surprises Left in V1	99
	5.10	Divide and Conquer	101
	5.11	We Cannot Exhaustively Study All Possible Visual Stimuli	102
	5.12	We Live in the Visual Past: Response Latencies Increase along the	101
		Ventral Stream	104
	5.13	Receptive Field Sizes Increase along the Ventral Visual Stream	105
		What Do Neurons beyond V1 Prefer?	106
	5.15	Brains Construct Their Interpretation of the World: The Case of	
		Illusory Contours	107
		A Colorful V4	108
	5.17	Attentional Modulation	109
	5.18	Summary	110
	Furth	er Reading	111
6		the Highest Echelons of Visual Processing to Cognition	112
	6.1	A Well-Connected Area	112
	6.2	ITC Neurons Show Shape Selectivity	113
	6.3	Selectivity in the Human Ventral Visual Cortex	115
	6.4	What Do ITC Neurons <i>Really</i> Want?	117
	6.5	ITC Neurons Show Tolerance to Object Transformations	118
	6.6	Neurons Can Complete Patterns	119
	6.7	IT Takes a Village	120
	6.8	ITC Neurons Are More Concerned with Shape than Semantics	123
	6.9	Neuronal Responses Adapt	125
	6.10	Representing Visual Information in the Absence of a Visual Stimulus	127
	6.11	Task Goals Modulate Neuronal Responses	128
	6.12	The Role of Experience in Shaping Neuronal Tuning Preferences	129
	6.13	The Bridge between Vision and Cognition	130
	6.14	Summary	131
	Furth	er Reading	132
7	Neuro	biologically Plausible Computational Models	133
	7.1	Why Bother with Computational Models?	133
	7.2	Models of Single Neurons	135
	7.3	Network Models	140
	7.4	Firing-Rate Network Models	143
	7.5	The Convolution Operation	143
	7.6	Hopfield Networks	145
	7.7	Neural Networks Can Solve Vision Problems	148

Х	Conte	ents				
	7.8	Extreme Biological Realism: The "Blue Brain" Project	150			
	7.9	Summary	151			
	Furth	er Reading	151			
8	Teacl	hing Computers How to See	152			
	8.1	Recap and Definitions	152			
	8.2	Common Themes in Modeling the Ventral Visual Stream	155			
	8.3	A Panoply of Models	156			
	8.4	A General Scheme for Object Recognition Tasks	158			
	8.5	Bottom-Up Hierarchical Models of the Ventral Visual Stream	159			
	8.6	Learning the Weights	162			
	8.7	Labeled Databases	167			
	8.8	Cross-Validation Is Essential	169			
	8.9	A Cautionary Note: Lots of Parameters!	170			
	8.10	A Famous Example: Digit Recognition in a Feedforward Network				
		Trained by Gradient Descent	171			
	8.11	A Deep Convolutional Neural Network in Action	171			
	8.12	To Err Is Human and Algorithmic	176			
	8.13	Predicting Eye Movements	179			
	8.14	Predicting Neuronal Firing Rates	183			
	8.15	All Models Are Wrong; Some Are Useful	185			
	8.16	Horizontal and Top-Down Signals in Visual Recognition	186			
	8.17	Predictive Coding	187			
	8.18	Summary	190			
	Furth	er Reading	191			
9	Toward a World with Intelligent Machines That Can Interpret the Visual World					
	9.1	The Turing Test for Vision	193			
	9.2	Computer Vision Everywhere	195			
	9.3	Incorporating Temporal Information Using Videos	199			
	9.4	Major Milestones in Object Classification	200			
	9.5	Real-World Applications of Computer Vision Algorithms for Object				
		Classification	203			
	9.6	Computer Vision to Help People with Visual Disabilities	207			
	9.7	Deep Convolutional Neural Networks Work Outside of Vision Too	209			
	9.8	Image Generators and GANs	210			
	9.9	DeepDream and XDream: Elucidating the Tuning Properties of				
		Computational Units and Biological Neurons	211			
	9.10	Reflections on Cross-Validation and Extrapolation	213			
	9.11	Adversarial Images	216			
	9.12	Deceptively Simple Tasks That Challenge Computer Vision	-			
		Algorithms	217			

CAMBRIDGE

		Contents	xi
	9.13	Challenges Ahead	218
	9.14	Summary	223
	Furth	er Reading	224
10	Visua	I Consciousness	225
	10.1	A Non-exhaustive List of Possible Answers	227
	10.2	The Search for the NCC: The Neuronal Correlates of Consciousness	230
	10.3	The Representation of Conscious Content Must Be Explicit	231
	10.4	Experimental Approaches to Study Visual Consciousness	233
	10.5	Neurophysiological Correlates of Visual Consciousness during	
		Binocular Rivalry	237
	10.6	Desiderata for the NCC	239
	10.7	Integrated Information Theory	240
	10.8	Summary	243
	Furth	er Reading	243
	Index	:	244