Contents

List of Tables xii
List of Figures xiv
Preface xix
Glossary of Notation xxv

I Probability Functions, Probability Density Functions, and Their Cumulative Counterparts 1

1 Discrete Probability and Cumulative Probability Functions 3
1.1 Overview 3
1.2 Parametric Probability Function Estimation 5
1.3 Nonsmooth Probability Function Estimation 8
1.4 Smooth Kernel Probability Function Estimation 11
 1.4.1 Estimator Properties for Unordered Categorical Variables and Kernels 12
 1.4.2 The SMSE-Optimal Smoothing Parameter and Rate of Convergence 16
 1.4.3 Asymptotic Normality 18
 1.4.4 Kernel Estimation and Shrinkage 18
 1.4.5 Estimator Properties for Ordered Categorical Variables and Kernels 19
1.5 Nonsmooth Cumulative Probability Function Estimation 22
1.6 Smooth Kernel Cumulative Probability Function Estimation 25
1.7 The Multivariate Extension 27
1.8 Practitioner’s Corner 29
 1.8.1 Estimating Probability Functions in R 29
 1.8.2 A Monte Carlo Comparison of Probability Estimators 34

Problem Set 45
2 Continuous Density and Cumulative Distribution Functions 49
 2.1 Overview 49
 2.2 Parametric Density Function Estimation 50
 2.3 Nonsmooth Density Function Estimation 51
 2.3.1 The Histogram Density Estimator 51
 2.3.2 The Naïve Density Estimator 52
 2.4 Smooth Kernel Density Function Estimation 56
 2.4.1 Properties of the Rosenblatt-Parzen Kernel Density Estimator 58
 2.4.2 The IMSE-Optimal Bandwidth and Rate of Convergence 66
 2.4.3 The IMSE-Optimal Kernel Function 67
 2.4.4 Asymptotic Normality 69
 2.4.5 Bandwidth Selection 71
 2.4.6 Bias-Reducing Kernel Functions 75
 2.5 Smooth Kernel Cumulative Distribution Function Estimation 77
 2.5.1 Properties of the Kernel Cumulative Distribution Function Estimator 77
 2.5.2 IMSE-Optimal Bandwidth 80
 2.5.3 Asymptotic Normality 81
 2.5.4 Bandwidth Selection 81
 2.6 Smooth Kernel Quantile Function Estimation 82
 2.7 The Multivariate Extension 85
 2.7.1 Properties of the Multivariate Kernel Density Estimator 87
 2.7.2 Properties of the Multivariate Kernel Cumulative Distribution Function Estimator 88
 2.8 Entropy and Information Measures 89
 2.8.1 Statistical Mechanics and Information Functions 89
 2.8.2 Relative Entropy 91
 2.8.3 Joint and Conditional Entropy 93
 2.8.4 Mutual Information 93
 2.8.5 Entropy and Metricness 94
 2.8.6 Entropy and Axiom Systems 94
 2.8.7 Entropy, Inference, Robustness, and Consistency 95
 2.8.8 Kernel Estimation and Entropy 96
 2.9 Practitioner’s Corner 97
 2.9.1 The Smoothed Bootstrap 103
 2.9.2 Testing Univariate Asymmetry 104
 2.9.3 Testing Equality of Univariate Densities 106
 2.9.4 Testing Nonlinear Pairwise Independence 108
 2.9.5 Testing Nonlinear Serial Independence 109
CONTENTS

2.9.6 Bounded Domains and Boundary Corrections 111
2.9.7 Nonlinear Optimization and Multi-Starting 118
2.9.8 Confidence Bands and Nonparametric Estimation 123

Problem Set

3 Mixed-Data Probability Density and Cumulative Distribution Functions 131
 3.1 Overview 131
 3.2 Smooth Mixed-Data Kernel Density and Cumulative Distribution Function Estimation 132
 3.2.1 Properties of the Mixed-Data Smooth Kernel Density Estimator 133
 3.2.2 Properties of the Mixed-Data Smooth Kernel Cumulative Distribution Estimator 135
 3.3 The Multivariate Extension 135
 3.4 Smooth Kernel Copula Function Estimation with Mixed-Data 137
 3.4.1 Copulae and Dependence 139
 3.5 Practitioner’s Corner 142
 3.5.1 Testing Equality of Mixed-Data Multivariate Densities 142
 3.5.2 Generating Copula Function Contours 143

Problem Set

4 Conditional Probability Density and Cumulative Distribution Functions 147
 4.1 Overview 147
 4.2 Smooth Kernel Conditional Density Function Estimation 148
 4.2.1 Bandwidth Selection 149
 4.2.2 The Presence of Irrelevant Covariates 150
 4.3 Smooth Kernel Conditional Cumulative Distribution Function Estimation 152
 4.3.1 Bandwidth Selection 153
 4.4 Conditional Quantile Function Estimation 154
 4.4.1 Parametric Conditional Quantile Function Estimation 154
 4.4.2 Smooth Kernel Conditional Quantile Function Estimation 157
 4.5 Binary Choice and Multinomial Choice Models 158
 4.5.1 Parametric Binary Choice and Multinomial Choice Models 158
 4.5.2 Smooth Kernel Binary Choice and Multinomial Choice Models 159
 4.6 Practitioner’s Corner 162
 4.6.1 Generating Counterfactual Predictions 166
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6.2 Bootstrapping Counterfactual Predictions</td>
<td>166</td>
</tr>
<tr>
<td>4.6.3 The Smoothed Bootstrap</td>
<td>170</td>
</tr>
<tr>
<td>4.6.4 Assessing Model Performance</td>
<td>172</td>
</tr>
<tr>
<td>4.6.5 Average Treatment Effects and Propensity Score Matching</td>
<td>179</td>
</tr>
<tr>
<td>Problem Set</td>
<td>185</td>
</tr>
<tr>
<td>II Conditional Moment Functions and Related Statistical Objects</td>
<td>187</td>
</tr>
<tr>
<td>5 Conditional Moment Functions</td>
<td>189</td>
</tr>
<tr>
<td>5.1 Overview</td>
<td>189</td>
</tr>
<tr>
<td>6 Conditional Mean Function Estimation</td>
<td>193</td>
</tr>
<tr>
<td>6.1 Overview</td>
<td>193</td>
</tr>
<tr>
<td>6.2 Parametric Conditional Mean Models</td>
<td>195</td>
</tr>
<tr>
<td>6.2.1 (Re)-interpretation of Conditional Mean Models</td>
<td>197</td>
</tr>
<tr>
<td>6.2.2 Counterfactual Experiments and Conditional Mean Models</td>
<td>199</td>
</tr>
<tr>
<td>6.3 Local Constant Kernel Regression</td>
<td>206</td>
</tr>
<tr>
<td>6.3.1 Estimator Properties</td>
<td>208</td>
</tr>
<tr>
<td>6.3.2 The IMSE-Optimal Bandwidth and Kernel Function</td>
<td>218</td>
</tr>
<tr>
<td>6.3.3 Asymptotic Normality</td>
<td>219</td>
</tr>
<tr>
<td>6.3.4 Outlier-Resistant Local Constant Kernel Regression</td>
<td>219</td>
</tr>
<tr>
<td>6.3.5 Bandwidth Selection</td>
<td>220</td>
</tr>
<tr>
<td>6.3.6 A Coefficient of Determination for Nonparametric Regression</td>
<td>222</td>
</tr>
<tr>
<td>6.3.7 Local Constant Marginal Effects</td>
<td>223</td>
</tr>
<tr>
<td>6.4 Local Polynomial Kernel Regression</td>
<td>226</td>
</tr>
<tr>
<td>6.5 The Multivariate Local Polynomial Extension</td>
<td>229</td>
</tr>
<tr>
<td>6.6 Local Polynomial Kernel Regression and Shrinkage</td>
<td>232</td>
</tr>
<tr>
<td>6.7 Multivariate Mixed-Data Marginal Effects</td>
<td>235</td>
</tr>
<tr>
<td>6.7.1 A Consistent Test for Predictor Relevance</td>
<td>236</td>
</tr>
<tr>
<td>6.8 Time Series Kernel Regression</td>
<td>240</td>
</tr>
<tr>
<td>6.9 Shape Constrained Kernel Regression</td>
<td>245</td>
</tr>
<tr>
<td>6.10 Practitioner’s Corner</td>
<td>248</td>
</tr>
<tr>
<td>6.10.1 Kernel Regression Is Weighted Least Squares Estimation</td>
<td>248</td>
</tr>
<tr>
<td>6.10.2 Joint Determination of the Polynomial Degree and Bandwidth</td>
<td>249</td>
</tr>
<tr>
<td>6.10.3 A Consistent Nonparametric Test for Correct Parametric Specification</td>
<td>253</td>
</tr>
</tbody>
</table>
Table of Contents

6.10.4 Shape Constrained Kernel Regression 257
6.10.5 A Multivariate Application of Local Linear Regression 260
6.10.6 Confidence Bands and Nonparametric Estimation 263
6.10.7 Assessing Model Performance 264
6.10.8 Fixed-Effects Panel Data Models 269

Problem Set

7 Conditional Mean Function Estimation with Endogenous Predictors 275
7.1 Overview 275
7.2 Ill-Posed Inverse Problems and Identification 276
7.2.1 Kernel Smoothing and Ill-Posedness 277
7.2.2 Singular Design Matrices and Ill-Posedness 279
7.3 Parametric Instrumental Regression 280
7.4 Nonparametric Instrumental Regression 281
7.5 Practitioner’s Corner 285
7.5.1 Estimation of Engel Curves 285
7.5.2 Nonparametric Instrumental Regression with a Linear DGP 285

Problem Set

8 Semiparametric Conditional Mean Function Estimation 291
8.1 Overview 291
8.2 Robinson’s Partially Linear Model 291
8.3 Varying Coefficient Models 294
8.4 Semiparametric Single Index Models 296
8.4.1 Ichimura’s Method (Continuous Y) 297
8.4.2 Klein and Spady’s Method (Binary Y) 298
8.5 Summary 300
8.6 Practitioner’s Corner 300
8.6.1 A Specification Test for the Partially Linear Model 300
8.6.2 Assessing Model Performance - Continuous Y 301

Problem Set

9 Conditional Variance Function Estimation 309
9.1 Overview 309
9.2 Local Linear Conditional Variance Function Estimation 309
9.3 Practitioner’s Corner 311
9.3.1 A Simulated Illustration 311

Problem Set

© in this web service Cambridge University Press

www.cambridge.org
Appendices

A Large and Small Orders of Magnitude and Probability

- A.1 Big and Small O Notation
- A.2 Big and Small O in Probability Notation

B R, RStudio, TeX, and Git

- B.1 Installation of R and RStudio Desktop
- B.2 What Is R?
 - B.2.1 R in the News
 - B.2.2 Introduction to R
 - B.2.3 Econometrics in R
- B.3 What Is RStudio Desktop?
 - B.3.1 Introduction to RStudio
- B.4 Installation of TeX
- B.5 Installation of Git

C Computational Considerations

- C.1 Binning Methods
- C.2 Transforms
- C.3 Parallelism
- C.4 Multipole and Tree-Based Methods
- C.5 Computationally Efficient Kernel Estimation in R

D R Markdown for Assignments

- D.1 Source Code (R Markdown) for This Document
- D.2 R, RStudio, TeX, and Git
- D.3 What Is R Markdown?
- D.4 Creating a New R Markdown Document in RStudio
- D.5 Including R Results in Your R Markdown Document
- D.6 Reading Data from a URL
- D.7 Including Plots
- D.8 Including Bulleted and Numbered Lists
- D.9 Including Tables
- D.10 Including Verbatim (i.e., Freeform) Text
- D.11 Typesetting Mathematics
- D.12 Flexible Document Creation
- D.13 Knitting Your R Markdown Document
- D.14 Printing Your Document
- D.15 Troubleshooting and Tips

E Practicum

- E.1 Overview
- E.2 Getting Started with R
CONTENTS

E.2.1 Reading Datasets Created by Other Software Programs 344
E.2.2 Nonparametric Estimation of Density Functions 345

E.3 Introduction to the R Package np: Working with npdens() 346
E.3.1 Introduction to the npksum() Function 348
E.3.2 Applied Nonparametric Density Estimation 349
E.3.3 Introduction to Applied Nonparametric Regression 351
E.3.4 Advanced Use of the npksum() Function 352
E.3.5 Consistent Nonparametric Inference 354
E.3.6 Non-nested Model Comparison 357
E.3.7 Semiparametric Models 359
E.3.8 Nonparametric Discrete Choice Models 360
E.3.9 Shape Constrained Nonparametric Regression 362

Bibliography 367

Author Index 391

Subject Index 397