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Preface

In the early 20th century, the pioneering statistician Sir R. A. Fisher (1890-
1962) set in motion what is known today as the classical parametric Fisherian

approach by casting statistical estimation as a problem involving a finite

number of parameters. However, parametric models provide only an approx-
imation to the underlying data generating process and may therefore be
biased and inconsistent. Models that seek to describe the data generating
process in a statistically consistent manner are more involved, since the
unknown components in such models are functions that fully characterize
the underlying joint distribution of a data sample. Nonparametric methods
are suitable for the estimation of an unknown function that belongs to a
very broadly defined class of functions, and in this context, the number
of parameters involved is said to be of infinite dimension. Although the
complexity of nonparametric estimators often exceeds that of their more rigid
parametric counterparts, they offer practitioners alternative approaches that
can reveal features present in a data sample that might otherwise remain
undetected.

Interest in nonparametric methodology has grown considerably over the
past few decades, stemming in part from vast improvements in computer
hardware and the availability of new software that allows practitioners to take
full advantage of these numerically intensive methods. The earliest work on
nonparametric kernel estimation of probability density functions dates back
to the early 1950s (Fix and Hodges, 1951), on kernel estimation of regression

functions to the 1960s (Watson, 1964), and on kernel estimation of probability

mass functions to the 1970s (Aitchison and Aitken, 1976). There exist a
variety of books that are devoted to nonparametric estimation and inference,
although most of them appear to have been written with an audience of
advanced graduate students and researchers in mind, and their focus is often
on one very specific aspect of the field (e.g., density estimation). A list of
notable contributions would include

• Prakasa Rao (1983; Prakasa Rao, 2014) (devoted to large sample
properties of various nonparametric estimators)

• Devroye and Györfi (1985) (devoted to the L1 approach to nonpara-
metric estimation)

xix
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• Silverman (1986) (devoted to density estimation and related topics)
• Härdle (1990) (devoted to applied nonparametric regression)
• Scott (1992) (devoted to density estimation and high-dimensional visu-

alization)
• Wand and Jones (1995) (devoted to an accessible treatment of kernel

density estimation and regression)
• Fan and Gijbels (1996) (devoted to local polynomial estimation)
• Simonoff (1996) (devoted to smooth density estimation, regression, and

ordered categorical data)
• Bowman and Azzalini (1997) (devoted to the application of kernel

methods in S-plus)
• Hart (1997) (devoted to nonparametric smoothing and lack-of-fit tests)
• Bosq (1998) (devoted to the theory of kernel methods for dependent

data)
• Horowitz (1998) (devoted to semiparametric econometric methods)
• Pagan and Ullah (1999) (first broad treatment of nonparametric econo-

metrics)
• Fan and Yao (2003) (devoted to time series modeling)
• Yatchew (2003) (devoted to applied semiparametric methods using a

differencing technique)
• Ruppert et al. (2003) (devoted to semiparametric modeling)
• Härdle et al. (2004) (devoted to nonparametric and semiparametric

modeling)
• Wasserman (2006) (devoted to brief accounts of many modern topics

in nonparametric inference)
• Li and Racine (2007) (devoted to nonparametric and semiparametric

modeling with an emphasis on categorical covariates)
• Tsybakov (2009) (devoted to construction of optimal estimators, mini-

max optimality and adaptivity)
• Ahamada and Flachaire (2010) (devoted to an accessible introduction

to nonparametric and semiparametric econometrics)
• Henderson and Parmeter (2015) (devoted to an accessible treatment of

nonparametric econometrics)
• Politis (2015) (devoted to a transformation-based approach to model

free inference)
• Hansen (2018) (devoted to econometrics but with chapters for kernel

regression and density estimation)

In Li and Racine (2007), our aim was to provide a rigorous and comprehen-
sive treatment of nonparametric econometric methodology, with an emphasis
on mixed categorical and continuous data settings, intended for advanced
graduate students and researchers looking to keep abreast of this rapidly
growing field. The accompanying R (R Core Team, 2018) package, titled np,
(Hayfield and Racine, 2008) was intended to facilitate the implementation
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PREFACE xxi

in applied research settings of many of the methods that we discussed. We
are grateful for the constructive criticism and helpful feedback that we have
received about these projects, and we owe an enormous debt to the scores of
researchers whose work made them possible.

In this book, we are aiming our attention squarely at advanced under-
graduate students, intermediate graduate students, and faculty who wish to
explore this exciting field, although not necessarily at the level of theoretical
rigour that was found in our previous treatment. We take a more organic ap-
proach than existing treatments of the subject, and present a unique sequence
of topics that are not collectively found elsewhere. We begin with a simple
estimator that is standard fare in introductory statistics courses, namely
the sample proportion, which is a nonsmooth nonparametric estimator of an
unknown probability. This serves as preliminary motivation for the progres-
sive introduction of kernel-smoothing, density estimation, conditional density
estimation, and the estimation of more general conditional moments such
as the conditional mean (regression), variance, and related objects. Proof
concepts are illustrated once when each unique case is first encountered,
whereas proofs that are of a similar nature to those already treated are either
relegated to exercises or accompanied by citation info so that the interested
reader may find them in existing treatments. Our approach emphasizes the
plug-in principle that is the essence of most nonparametric methods. This
involves identifying a fundamental statistical object (e.g., a conditional mean),
expressing the object in terms of unknown density or distribution functions,
and then plugging in smooth and consistent estimates of these unknowns.
Special attention is also given to smoothing parameter selection and to the
statistical properties of the estimator that results.

Our treatment of nonparametric estimation evolves along the lines of what
one might encounter in an introductory statistics course, closely following the
conventional sequence of topics. That convention is to first introduce discrete
probability (i.e., mass) functions in Chapter 1 and then proceed to the study
of continuous probability density functions in Chapter 2. However, one
chapter that is conspicuously absent from introductory courses is a chapter
on probability distributions with mixed discrete and continuous features
(such problems are known to be “parametrically awkward” (Aitchison and
Aitken, 1976, page 419)). In a nonparametric framework, modeling such
objects isn’t awkward at all, and hence we fill this gap in Chapter 3 with
a treatment of mixed discrete and continuous probability density functions
and their cumulative counterparts. Moreover, it will be seen that we can
subsequently tackle in a seamless manner any statistical object that is
defined over mixed discrete and continuous data. Along the way, we will
also cover nonparametric estimation of smooth quantile functions and copula
functions. We then consolidate and fix notation by means of a parsimonious
representation of the mixed-data multivariate product kernel. This then
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allows us to plunge into a range of methods for estimation and inference
including nonparametric regression, nonparametric modeling of volatility, as
well as methods for stationary time series.

We assess pointwise and global estimation error via the mean square
and integrated (summed) mean square error, respectively. The pointwise
error of estimation at a given point x is the difference between an estimate
of the statistical object of interest and the object itself. For instance, we
might compute the difference between the empirical CDF Fn(x) and the
unknown CDF F (x). Pointwise error is a simple measure that is useful
for the construction of confidence intervals. The integrated mean square
error (or the summed mean square error in the context of discrete support
random variables) measures the overall error of estimation and is useful as a
criterion for bandwidth selection. Uniform error is another metric that is
computed as the maximal difference between the estimate and the object,
i.e., supx |Fn(x) − F (x)|. It is typically approached using empirical process
theory (Prakasa Rao, 2014). Uniform error is useful for placing bounds on
other types of error and establishing simultaneous or uniform confidence
bands. In this book, we consider only the first two types of error (pointwise
and global) and direct the reader whose interest lies in uniform error to other
more advanced treatments.

We emphasize how kernel estimators can be interpreted as shrinkage esti-
mators (Stein, 1956), as demonstrated in Kiefer and Racine (2009) and Kiefer
and Racine (2017). From this perspective, the local constant, local linear,
and other variants of local polynomial kernel estimators can be improved; for
a broad class of data-generating processes (the class of analytic functions),
these estimators are able to achieve the rate of convergence that is associated
with correctly specified parametric models. Theoretical underpinnings for this
result, which is achieved through joint selection of the polynomial degree and
bandwidth vectors, can be found in Hall and Racine (2015). Although this
approach requires a solution to a mixed-integer problem, its implementation
is now feasible in R, and this represents an exciting advance in the area of
local polynomial estimation of statistical objects. The interpretation of kernel
methods as shrinkage estimators is underscored wherever appropriate in each
chapter. Simulations and practical exercises reveal that the performance of
this estimator may be superior to that of alternative approaches that are
based on ad hoc selection of the polynomial order. Our perspective on kernel
estimators, as seen through the lens of shrinkage estimators, is quite novel
and, to the best of our knowledge, is not found elsewhere.

The computational run time of various routines in the R package np
(Hayfield and Racine, 2008) can be reduced through their ability to exploit
the power of multiple processors (see the R package npRmpi) and through
their incorporation of algorithmic enhancements such as the use of trees.
That being said, kernel methods are computationally intensive relative to
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many of their parametric peers; however, patience in this regard often pays
dividends.

R code for all examples in this book is sourced from an R Markdown script
and can be studied and modified by readers (this document is composed in R
Markdown and uses R bookdown extensions (https://bookdown.org/yihui/
bookdown) (Xie, 2017)). Each chapter ends with a Practitioner’s Corner

that provides a set of commented examples in R that can be refined by the
reader to suit their needs. A solutions manual is available to instructors
along with LATEX Beamer PDF formatted slides authored in R Markdown
that can be modified and tailored to an instructor’s needs.

In this book, we derive results only for the notationally parsimonious case
involving univariate data (or univariate conditioning/conditioned variables).
Where appropriate, we present results for the multivariate case and draw
attention to the salient differences between the two; however, for a thorough
theoretical treatment of the multivariate cases, we simply direct the interested
readers to Li and Racine (2007) and other sources. It is our conjecture that
essentially all of the intuition underlying nonparametric kernel methods can
be distilled from the univariate case, at least from the theoretical perspective.
However, from the applied perspective, we impose no such limitations, and
emphasize cases involving multivariate (and often mixed multivariate) data
throughout.

We also touch upon a number of practical aspects of nonparametric kernel
methods such as kernel carpentry (i.e., the construction of kernel functions
with certain useful properties), and provide empirical examples to illustrate
these concepts. We encourage the use of tools that facilitate reproducible
research.

This book would not exist without the legacy (and ongoing) contributions
of an incredibly talented global network of academics harbouring a wide array
of research interests in the field of nonparametric statistics and econometrics.
If you are reading this and have contributed to this exciting field, please take
a virtual bow and accept our heartfelt thanks.

I would like to thank an abbreviated cast of characters, without whom this
project would not exist. Qi Li, a co-author on a range of projects, has been
an ongoing source of guidance, support, and encouragement. Tristen Hayfield
and Zhenghua Nie, co-authors on the R packages np and crs, respectively,
have helped craft user-friendly and computationally efficient implementations
of the procedures that are detailed in this book. Nick Kiefer, a co-author,
was the first to open my eyes to the interpretation of kernel estimators as
shrinkage estimators. Peter Hall, a co-author whose acumen, friendship, and
wisdom are sorely missed, made enduring contributions to the field and left a
rich legacy that will surely last for generations. I would also like to thank but
not implicate John Kealey, a former Ph.D. student who painstakingly pored
through this book and polished its many rough edges, along with the students
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and faculty who attended a graduate course at McMaster University in the
Fall of 2017 and who reported numerous typos in early drafts of this book
(Alyssa, Anthony, Camille, Francis, James, Joaquin, Karen, Mark, Richard,
Yuyan, and Zvezdomir). And last but certainly not least, I am indebted to
my wife Jennifer and son Adam, who endured far too many months of my
seven-day-a-week obsession with this project.

This book is dedicated to the memory of our kind, gentle, generous,
and irreplaceable colleague, Peter Gavin Hall AO FAA FRS (November 21,
1951—January 9, 2016), an Australian researcher who worked in the areas of
probability theory and mathematical statistics. Peter was described by the
American Statistical Association as one of the most influential and prolific
theoretical statisticians in the history of the field. It is fitting that The School
of Mathematics and Statistics Building at The University of Melbourne was
renamed the Peter Hall Building in his honour on December 9, 2016.
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Glossary of Notation

Object Brief Definition

β(x) marginal effects function (derivative or finite
difference of g(x))

β̂(x) kernel smoothed marginal effects function
(derivative or finite difference of ĝ(x))

C(ux, uy) bivariate copula function
f(x) probability density function

f̂(x) kernel smoothed probability density function
f(y|x) conditional probability density function

f̂(y|x) kernel smoothed conditional probability density
function

F (x) cumulative distribution function
Fn(x) empirical cumulative distribution function

F̂ (x) kernel smoothed cumulative distribution function
F (y|x) cumulative conditional distribution function

F̂ (y|x) kernel smoothed cumulative conditional distribution
function

γ vector of bandwidths and smoothing parameters for
q continuous, r unordered, and s ordered covariates

G((x − Xi)/h) continuous support univariate cumulative
probability density kernel function

Gγ(Xi, x) mixed-data multivariate cumulative probability
density kernel function

g(x) conditional mean function
ĝ(x) kernel smoothed conditional mean function
h bandwidth for continuous covariate
K((x − Xi)/h) continuous support univariate probability density

kernel function
Kγ(Xi, x) mixed-data multivariate probability density kernel

function
λ smoothing parameter for discrete covariate

xxv
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xxvi GLOSSARY OF NOTATION

Object Brief Definition

l(Xi, x, λ) unordered discrete support univariate probability
mass kernel function

L(Xi, x, λ) ordered discrete support univariate probability mass
kernel function

L(Xi, x, λ) ordered discrete support univariate cumulative
probability mass kernel function

M(x) conditional mode function

M̂(x) kernel smoothed conditional mode function
p(x) probability mass function
pn(x) empirical probability mass function (sample

proportion)
p̂(x) kernel smoothed probability mass function
qτ unconditional quantile function (inverse CDF)
q̂τ kernel smoothed unconditional quantile function
qτ (x) conditional quantile function (inverse conditional

CDF)
q̂τ (x) kernel smoothed conditional quantile function
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