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In the last few years, algorithms for convex optimization have revolutionized

algorithm design, both for discrete and continuous optimization problems. For

problems such as maximum flow, maximum matching, and submodular function

minimization, the fastest algorithms involve essential methods such as gradient

descent, mirror descent, interior point methods, and ellipsoid methods. The goal of this

self-contained book is to enable researchers and professionals in computer science,

operations research, data science, and machine learning to gain an in-depth

understanding of these algorithms. The text emphasizes how to derive key algorithms

for convex optimization from first principles and how to establish precise running time

bounds. This modern text explains the success of these algorithms in problems of

discrete optimization, as well as how these methods have significantly pushed the state

of the art of convex optimization itself.
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Preface

Convex optimization studies the problem of minimizing a convex function over

a convex set. Convexity, along with its numerous implications, has been used

to come up with efficient algorithms for many classes of convex programs.

Consequently, convex optimization has broadly impacted several disciplines

of science and engineering.

In the last few years, algorithms for convex optimization have revolu-

tionized algorithm design, both for discrete and continuous optimization

problems. The fastest-known algorithms for problems such as maximum flow

in graphs, maximum matching in bipartite graphs, and submodular function

minimization involve an essential and nontrivial use of algorithms for convex

optimization such as gradient descent, mirror descent, interior point methods,

and cutting plane methods. Surprisingly, algorithms for convex optimization

have also been used to design counting problems over discrete objects such as

matroids. Simultaneously, algorithms for convex optimization have become

central to many modern machine learning applications. The demand for

algorithms for convex optimization, driven by larger and increasingly complex

input instances, has also significantly pushed the state of the art of convex

optimization itself.

The goal of this book is to enable a reader to gain an in-depth under-

standing of algorithms for convex optimization. The emphasis is to derive

key algorithms for convex optimization from first principles and to establish

precise running time bounds in terms of the input length. Given the broad

applicability of these methods, it is not possible for a single book to show the

applications of these methods to all of them. This book shows applications

to fast algorithms for various discrete optimization and counting problems.

The applications selected in this book serve the purpose of illustrating a rather

surprising bridge between continuous and discrete optimization.

xi
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xii Preface

The structure of the book. The book has roughly four parts. Chapters

3, 4, and 5 provide an introduction to convexity, models of computation and

notions of efficiency in convex optimization, and duality. Chapters 6, 7, and 8

introduce first-order methods such as gradient descent, mirror descent and

the multiplicative weights update method, and accelerated gradient descent,

respectively. Chapters 9, 10, and 11 present Newton’s method and various

interior point methods for linear programming. Chapters 12 and 13 present

cutting plane methods such as the ellipsoid method for linear and general

convex programs. Chapter 1 summarizes the book via a brief history of the

interplay between continuous and discrete optimization: how the search for

fast algorithms for discrete problems is leading to improvements in algorithms

for convex optimization.

Many chapters contain applications ranging from finding maximum flows,

minimum cuts, and perfect matchings in graphs, to linear optimization over

0-1-polytopes, to submodular function minimization, to computing maximum

entropy distributions over combinatorial polytopes.

The book is self-contained and starts with a review of calculus, lin-

ear algebra, geometry, dynamical systems, and graph theory in Chapter 2.

Exercises posed in this book not only play an important role in checking one’s

understanding; sometimes important methods and concepts are introduced and

developed entirely through them. Examples include the Frank-Wolfe method,

coordinate descent, stochastic gradient descent, online convex optimization,

the min-max theorem for zero-sum games, the Winnow algorithm for clas-

sification, bandit optimization, the conjugate gradient method, primal-dual

interior point method, and matrix scaling.

How to use this book. This book can be used either as a textbook for a

stand-alone advanced undergraduate or beginning graduate-level course, or as

a supplement to an introductory course on convex optimization or algorithm

design. The intended audience includes advanced undergraduate students,

graduate students, and researchers from theoretical computer science, discrete

optimization, operations research, statistics, and machine learning. To make

this book accessible to a broad audience with different backgrounds, the

writing style deliberately emphasizes the intuition, sometimes at the expense

of rigor.

A course for a theoretical computer science or discrete optimization audi-

ence could cover the entire book. A course on convex optimization can omit

the applications to discrete optimization and can, instead, include applications

as per the choice of the instructor. Finally, an introductory course on convex

optimization for machine learning could include material from Chapters 2 to 7.
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Preface xiii

Beyond convex optimization? This book should also prepare the reader for

working in areas beyond convex optimization, e.g., nonconvex optimization

and geodesic convex optimization, which are currently in their formative years.

Nonconvex optimization. One property of convex functions is that a “local”

minimum is also a “global” minimum. Thus, algorithms for convex opti-

mization, essentially, find a local minimum. Interestingly, this viewpoint has

led to convex optimization methods being very successful for nonconvex

optimization problems, especially those that arise in machine learning. Unlike

convex programs, some of which can be NP-hard to optimize, most interesting

classes of nonconvex optimization problems are NP-hard. Hence, in many of

these applications, we define a suitable notion of local minimum and look for

methods that can take us to one. Thus, algorithms for convex optimization are

important for nonconvex optimization as well; see the survey by Jain and Kar

(2017).

Geodesic convex optimization. Sometimes, a function that is nonconvex in

a Euclidean space turns out to be convex if we introduce a suitable Riemannian

metric on the underlying space and redefine convexity with respect to the

“straight lines” – geodesics – induced by the metric. Such functions are called

geodesically convex and arise in optimization problems over Riemannian

manifolds such as matrix Lie groups; see the survey by Vishnoi (2018).

The theory of efficient algorithms for geodesic convex optimization is under

construction, and the paper by Bürgisser et al. (2019) presents some recent

progress.
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Notation

Numbers and sets:

• The set of natural numbers, integers, rationals, and real numbers are

denoted by N, Z,Q, and R, respectively. Z≥0,Q≥0, and R≥0 denote the set

of nonnegative integers, rationals, and reals, respectively.

• For a positive integer n, we denote by [n] the set {1,2, . . . ,n}.
• For a set S ⊆ [n], we use 1S ∈ Rn to denote the indicator vector of S

defined as 1S(i) = 1 for all i ∈ S and 1S(i) = 0 otherwise.

• For a set S ⊆ [n] of cardinality k, we sometimes write RS to denote Rk .

Vectors, matrices, inner products, and norms:

• Vectors are denoted by x and y. A vector x ∈ Rn is a column vector but is

usually written as x = (x1, . . . ,xn). The transpose of a vector x is denoted

by x⊤.

• The standard basis vectors in Rn are denoted by e1, . . . ,en, where ei is the

vector whose ith entry is one and the remaining entries are zero.

• For vectors x,y ∈ Rn, by x ≥ y, we mean that xi ≥ yi for all i ∈ [n].

• For a vector x ∈ Rn, we use Diag(x) to denote the n × n matrix whose

(i,i)th entry is xi for 1 ≤ i ≤ n and is zero on all other entries.

• When it is clear from context, 0 and 1 are also used to denote vectors with

all 0 entries and all 1 entries, respectively.

• For vectors x and y, their inner product is denoted by 〈x,y〉 or x⊤y.

• For a vector x, its ℓ2 or Euclidean norm is denoted by ‖x‖2 ≔
√

〈x,x〉. We

sometimes also refer to the ℓ1 or Manhattan distance norm

‖x‖1 ≔
∑n

i=1 |xi |. The ℓ∞-norm is defined as ‖x‖∞ ≔ maxn
i=1 |xi |.

• The outer product of a vector x with itself is denoted by xx⊤.

• Matrices are denoted by capitals, e.g., A and L. The transpose of A is

denoted by A⊤.

xv
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xvi Notation

• The trace of an n × n matrix A is Tr (A) ≔
∑n

i=1 Aii . The determinant of

an n × n matrix A is det(A) =
∑

σ∈Sn
sgn(σ )

∏n
i=1 Aiσ (i). Here Sn is the

set of all permutations of n elements and sgn(σ ) is the number of

transpositions in a permutation σ , i.e., the number of pairs i < j such that

σ(i) > σ(j).

Graphs:

• A graph G has a vertex set V and an edge set E. All graphs are assumed to

be undirected unless stated otherwise. If the graph is weighted, there is a

weight function w : E → R≥0.

• A graph is said to be simple if there is at most one edge between two

vertices and there are no edges whose endpoints are the same vertex.

• Typically, n is reserved for the number of vertices |V | and m for the number

of edges |E|.

Probability:

• ED[·] denotes the expectation and PrD[·] denotes the probability over a

distribution D. The subscript is dropped when clear from context.

Running times:

• Standard big-O notation is used to describe the limiting behavior of a

function. Õ denotes that potential poly-logarithmic factors have been

omitted, i.e., f = Õ(g) is equivalent to f = O(g logk(g)) for some

constant k.
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