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Background

I shall not be satisfied unless I produce something

that shall for a few days supersede the last fashionable

novel on the tables of young ladies.

LORD THOMAS B. MACAULAY, on his History of England.

The term “stratified flow" is commonly used to denote the flow of “stratified

fluid", or more correctly “density-stratified fluid", and it is so used here. In such

fluids the density (mass per unit volume) varies with position in the fluid, and this

variation is dynamically important. Normally this density variation is stable with

lines of constant density oriented nearly horizontally, with lighter fluid above and

heavier fluid below. The density variation may be continuous, as occurs in most of

the atmosphere and ocean, or be concentrated in discontinuous interfaces, such as

at the surface of the ocean. In many situations the variation in density is very small,

but such variations may have a dominant effect on the flow if the small buoyancy

forces are given sufficient time to act. This book is about the motion of such fluids

caused by their flow over topographic features. There has been substantial progress

in recent years in this area. It is now possible to view the subject as a whole, and

to understand the relation between, for example, the flow of a river over a ridge or

weir, and the flow of the atmosphere over a mountain range. Whilst some details

remain to be resolved, a corner has been turned, and the subject may now be viewed

from a new and broader perspective.

The terms “topography", used in the title, and the equally common “orography"

are not equivalent. The first may be taken to mean any departure from a level surface,

such as lumps and bumps in a laboratory experiment for example. “Orography",

on the other hand, implies obstacles on the large scale such as mountain ranges,

which affect stratified processes in the atmosphere, and excludes rocks, buildings

and the like, which don’t. Topography therefore includes orography, and we will
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2 Background

use the first term here for generality and consistency, although the second may be

more appropriate when relating to atmospheric flows.

The subject of stratified flows is relevant to meteorology, oceanography and

environmental engineering in the broad sense, with specific applications ranging

from flow around hills to flow under ice keels. However, the impetus for the recent

progress has been driven by atmospheric considerations more than others. This

is for two reasons. First, it has become clear that a lack of understanding of the

effects of mountain ranges and smaller topographic features on the atmosphere

has been a significant impediment to the improvement in weather forecasting. The

form drag (as distinct from surface frictional drag) of the topography is known to

constitute about 50% of the total drag on the atmosphere (e.g. Palmer et al., 1986),

and this drag is manifested in stratified effects such as internal gravity waves. The

correction of this deficiency requires adequate parametrisation of sub-grid-scale

topographic effects in large-scale models for numerical weather prediction. The

conspicuous deficiencies have stimulated atmospheric field research programmes

such as ALPEX, PYREX, MAP and T-REX, as well as many smaller studies.

Second, and on a smaller scale, increasing concerns about environmental issues such

as atmospheric pollution and air quality have instigated a number of mesoscale field

and other studies which aim to describe the motion of air in or around mountains,

hills and valleys, collectively known as “complex terrain", in considerable detail

(see Blumen, 1990). However, field programmes do not usually provide mechanistic

answers by themselves, because of the general sparseness, paucity and ambiguity of

most field data sets. Consequently, most of the improved understanding in dynamics

has instead come from analytical, numerical and laboratory studies, with the field

data supplying confirmation of applicability to the atmosphere.

The effects of the Earth’s rotation (i.e. the Coriolis force) have been excluded from

the whole of this monograph, and this places some restrictions on the applicability

of the material described to atmospheric flows. Specifically, it strictly applies to

atmospheric flows that last for a few hours or less (significantly less than a pendulum

day), and have length-scales of a few tens of kilometres or less. In the ocean, where

fluid velocities are typically smaller by a factor of 100, the maximum relevant

length-scale is smaller by the same factor and is typically several hundred metres.

However, when the flow is constrained to a channel, as in narrow straits, estuaries

and rivers, the effect of rotation on flow in the downstream direction can be small,

even over quite large distances.

“Text books" that aim to cover particular areas of current research are not that

common, but I would like to mention two that concentrate on areas that are outside

the main theme of this book, but overlap with it to some extent. The first is Rotating

Hydraulics: Nonlinear Topographic Effects in the Ocean and Atmosphere, by Pratt

& Whitehead, which includes rotation and the Coriolis force in almost all sections.

www.cambridge.org/9781108481526
www.cambridge.org


Cambridge University Press
978-1-108-48152-6 — Topographic Effects in Stratified Flows
Peter G. Baines 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.1 Equations for fluid motion 3

The second is Buoyancy-Driven Flows, edited by Chassignet et al., which contains

10 chapters by separate distinguished authors, where the effects of buoyancy are

paramount, and any effects of rotation or topography are incidental. There is a

complementary relationship between all three.

The remainder of this chapter is concerned with the basic equations and their

applicability to the atmosphere, their relevant boundary conditions, some conser-

vation equations that will be needed later, and some comments on terminology.

Chapters 2 and 3 are concerned with the properties of topographically forced flows

of a homogeneous fluid layer with a free surface, which is applicable to flow in

a river or channel. This system constitutes, in a sense, the simplest example of a

stratified fluid, but there is still plenty of scope for non-linear complexity here,

and it provides a useful prototype for the more general stratification considered in

subsequent chapters. In Chapters 4, 5 and 6 the additional effects present when the

layer is surmounted by a second layer are discussed. These effects on the lower layer

may only amount to “reduced gravity" due to the density of the overlying layer if the

latter is deep, the motion is inviscid, and it has long horizontal length-scales. On the

other hand, if the upper layer is shallow and in motion, the character of the flow may

be quite different from that of a single layer. An example of this is the important

case of “exchange flows", where the two layers are flowing in opposite directions.

Chapter 7 describes gravity currents and flows down slopes, notably into stratified

environments, and in Chapters 8 and 9 we proceed from two layers to “many", and

discuss the behaviour of disturbances in continuously stratified fluids per se, without

considering the effect of topography specifically. For the most part, this concerns

the general properties of small-amplitude internal gravity waves in stratified flows

with shear. Chapters 10–14 are devoted to the effects of continuously stratified flow

over two- and three-dimensional topography, respectively, and constitute the heart

of the book, whereas Chapter 15 is concerned with the application of the material

of the preceding chapters to laboratory modelling of flow over complex terrain, and

the parametrisation of sub-grid-scale orographic effects in numerical models of the

atmosphere.

1.1 Equations for fluid motion

The equations governing the motion of a stratified fluid are (see, for example,

Batchelor, 1967)

Du

Dt
= −gẑ −

1

ρ
∇p + ν∇2u, (1.1)

1

ρ

Dρ

Dt
+ ∇ · u = 0. (1.2)
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4 Background

where u = (u, v,w) is the fluid velocity, ρ the fluid density, p the pressure, g the

acceleration due to gravity, and the kinematic viscosity ν = µ/ρ (assumed spatially

uniform), where µ is the viscosity. The term D/Dt denotes the Lagrangian derivative

with respect to time t, and ẑ is the unit vector vertically upwards. In most situations

the viscous term is small, and may be neglected for present purposes. If the density

of each very small particle of fluid always remains constant as it moves, in spite of

variations in pressure, the fluid is incompressible and we have

Dρ

Dt
= 0, (1.3)

which in conjunction with (1.2) implies

∇ · u = 0. (1.4)

An important quantity that characterises continuously stratified fluids is the buoy-

ancy frequency N (formerly known as the Brunt–Väisälä frequency), which for

incompressible fluids at rest is defined by

N2
= −

g

ρ

dρ

dz
, (1.5)

where N is the frequency of local unforced vertical oscillations of small amplitude,

and is the highest frequency that local buoyancy-driven fluctuations may have. It

therefore gives a characteristic time-scale for these motions (see, for example, Gill,

1982, for more details). This frequency N has maximum values of about 10−2 rad/s

in both the atmosphere and ocean, and this sets the minimum time-scale for the

motions there that we will be considering. Under these circumstances, it is often

appropriate to consider these motions as variations about a basic state, which is in

hydrostatic equilibrium. The pressure and density fields may be expressed as

p = p0(z) + p′(x, y, z, t), ρ = ρ0 + ρ
′(x, y, z, t), (1.6)

where p0 and ρ0 represent the values in hydrostatic equilibrium, and are related by

dp0

dz
= −ρ0g. (1.7)

The inviscid equation of motion for the perturbations may then be written

(ρ0 + ρ
′)

Du

Dt
= −gρ′ẑ − ∇p′. (1.8)

For most purposes water is effectively incompressible, but in general air is not. The

equilibrium state of the atmosphere, specified by p0(z), ρ0(z), is obtained from (1.7)

and the equation of state for a uniform ideal gas, p = ρRT , for a specific temperature

profile T(z). Here R = R∗/M , where R∗
= 8314.3 joule/(Kelvin kilomole) is the

Universal Gas Constant, and M is the molecular weight of the gas in question. Since
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1.1 Equations for fluid motion 5

air is a mixture of gases, we require its mean or effective molecular weight, which

for dry air is 28.97; and this gives R = 287 joule/(Kelvin kilogram). (For a more

detailed discussion of the thermodynamics, including the effects of water vapour,

the reader is referred to Wallace & Hobbs, 1977.) If T(z) (in Kelvin) is taken to be

uniform with height, as a simple approximation to the mean atmospheric profile,

then p0(z) = ρ0(z)RT , and (1.7) gives

p0(z) = p0(0)e
−z/Hs , ρ0(z) = ρ0(0)e

−z/Hs , (1.9)

where Hs is the scale height, defined by Hs = RT/g. IfT is 280 K, then Hs = 8.2 km.

The equations (inviscid for simplicity) for the adiabatic motion of an ideal gas are

(1.1) omitting viscous terms, (1.2) and

D

Dt
(p/ργ) = 0, or

Dθ

Dt
= 0, (1.10)

where γ is the ratio of specific heats (γ = 1.4 for air) and θ is the potential

temperature defined by θ = T(pr/p)1−1/γ, where T is the actual temperature at

pressure p, pr is the pressure at the reference level, usually 1000mb, and θ is the

temperature an air parcel would have if transported adiabatically to the level where

p = pr . For a compressible ideal gas the buoyancy frequency N is given by

N2
=

g

θ

dθ

dz
. (1.11)

There are circumstances under which air in motion satisfying these equations

may be regarded as incompressible. These have been discussed in general terms by

Batchelor (1967), and we consider them here in the special context of flow forced

by topography. From (1.2) and (1.10) we may obtain

1

γp

Dp

Dt
= −∇ · u, (1.12)

and for the fluid to be effectively incompressible we require

���
1

γp

Dp

Dt

��� ≪
���
∂u

∂x

���, (1.13)

where the x-direction is chosen to be the principal direction of fluid flow (if there is

one), and ∂u/∂x is taken to be representative of the constituent terms in ∇ ·u. If the

variations in u due to the topography have magnitude U and horizontal length-scale

L, and the variables are expressed relative to a hydrostatic basic state as in (1.8),

then (1.3) becomes

���
1

ρcs2

∂p

∂t
−

1

2cs2

Du2

Dt
−
g
′
w

cs2

��� ≪
U

L
, (1.14)

where cs = (γp/ρ)1/2 is the speed of sound in an ideal gas, and g
′
= ρ′g/ρ. Now if
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6 Background

the pressure varies with a frequency ω, the magnitude of these pressure variations

will be of order ρLUω, so that the first term on the left-hand side will be of order

LUω2cs
2, and the second of order ωU2/cs

2. If the maximum local frequency of

oscillations forced by flow over topography is the buoyancy frequency N , there are

two possible choices for ω, namely N and the advective frequency, UT/L, where

UT is the total fluid speed relative to the ground (and by implication, U < UT ).

Admitting both of these magnitudes, it follows that the three terms on the left-

hand side of (1.14) will all be individually smaller than the right-hand side if the

following (not respective) conditions are met:

UT
2

cs2
≪ 1,

N2L2

cs2
≪ 1,

g
′
w

cs2
≪

U

L
. (1.15)

For internal gravity waves forced by topography with frequency comparable with

N , the appropriate length-scale is L∼UT/N; on the other hand, if L is a topographic

length-scale that is much longer than UT/N , the relevant frequency is not N but

UT/L. Either way, the second criterion reduces to the first, and since cs∼330 m/s,

these two conditions will be met provided UT<100 m/s. This is normally the case

in the atmosphere, with the exception of jet streams in the upper troposphere.

For the last of (1.15), we may assume that U/L∼W/H, where W is a typical

magnitude for the vertical velocity and H is a typical vertical length-scale for its

variation. We also have g
′∼N2H, so that the third requirement becomes

N2H2

cs2
≪ 1. (1.16)

This criterion is satisfied in the atmosphere if H<10 km, which is normally the

case.

Approximation (1.16) may be avoided if ∂ρ/∂t is small, so that (1.2) may be

approximated by

∇ · (ρu) = 0. (1.17)

This equation then takes the place of (1.4), and this approximation is termed the

anelastic approximation (Ogura & Phillips, 1962), because the system no longer

supports sound waves. For its validity we require the first two of (1.15), namely

UT
2/cs

2 ≪ 1, as discussed above, and the assumption that the motion is buoyancy

driven so that no frequency is greater than N . This approximation has been used

in a number of numerical studies that will be described later. The solutions of this

system are very similar in character to those of the incompressible system.

In addition to anelasticity and incompressibility, two further approximations

will often be made, namely the Boussinesq approximation and the hydrostatic

approximation. Each of these approximations provides a useful simplification of the
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1.1 Equations for fluid motion 7

dynamical equations in appropriate circumstances, without significantly affecting

the character of the motion being studied. The conditions for their validity are as

follows. We consider motion in a layer of fluid of total depth D and express ρ0 as

ρ0 = ρ + △ρ0(z), where ρ is a mean density in the fluid layer. For incompressible

and anelastic motions, ρ′ will be of the same order of magnitude as △ρ0(z). If

we have △ρ0/ρ ≪ 1 in this layer, we may replace ρ0 + ρ
′ in (1.8) by its mean

value ρ, and incur an error of relative magnitude △ρ0(z)/ρ. The density variations

are thereby neglected in the inertia term, but retained in the buoyancy-force term

where they are multiplied by g. This constitutes the Boussinesq approximation. It

is normally a good approximation for all watery fluids in geophysical situations,

and the analytic simplification that it provides is valuable. For this approximation

to be valid in the atmosphere we also require D ≪ Hs, the scale height, which

restricts us to the lowest 1 or 2 km of the atmosphere. This is not as restrictive as

it sounds, however. Bretherton (1966) has shown that it is possible to transform

the anelastic equations to a form in which the Boussinesq approximation remains

valid for linear motions over a much deeper layer, provided that the vertical scale

H of such motions is much less than Hs. Throughout this book, we will mostly be

concerned with the Boussinesq form of the equations, since these apply to the lower

part of the atmosphere and contain the essence of the topics being covered, without

surplus complexity. For readers who are interested in upper atmosphere phenomena,

most of these results are at least qualitatively valid in the non-Boussinesq system.

The hydrostatic approximation is valid when

∂p′

∂z
� −ρ′g, (1.18)

implying that the dynamical variations about the mean state are in hydrostatic

balance, in addition to the mean flow state itself (from (1.7)). For this to hold, we

require
���
∂w

∂t
+ u · ∇w

��� ≪
���
∂p′

∂z

���. (1.19)

If U and W are taken to be the horizontal and vertical velocity variations on the

length-scales L and H respectively, and with W ∼ UH/L and H ∼ UT/N , it may

be readily shown that (1.19) is satisfied if

UT

N L
≪ 1. (1.20)

For small-amplitude motions L is the horizontal scale of the forcing topography,

but for large-amplitude motions we may have L∼UT/N also, so that hydrostaticity

depends on amplitude, or steepness of the streamlines.

Leaving aside the effect of pressure, the principal factor causing the variation in
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8 Background

the density of air is temperature, and the density of fluid particles may alter because

of the molecular diffusion of heat from one to another. The density of sea water

is affected by both temperature and salinity, which diffuse at different rates. For

present purposes we will assume that the density of the fluid concerned is affected

by the diffusion of a single component, notionally the temperature T , which satisfies

DT

Dt
= κT∇

2T, (1.21)

where κT is the thermal diffusivity. For an incompressible fluid with an equation of

state of the form ρ = ρ(T), we may write

Dρ

Dt
=

dρ

dT

DT

Dt
= κ∇2ρ, (1.22)

where κ is the diffusivity of density. If ρ(T) is effectively linear over the range of

interest with the form

ρ(T) = ρ0[1 − α(T − T0)], (1.23)

where ρ0, α and T0 are constant, then κ = κT . If molecular diffusion is important,

therefore, (1.22) replaces (1.3) in the equations for the motion of an incompressible

fluid.

In many cases it is convenient to approximate a continuously stratified fluid with

a fluid that is made up of a superposition of distinct layers, each of uniform density.

Normally, each of these homogeneous layers is thin relative to the length-scale

of the motion, and the horizontal velocity within the layer may be supposed to

be uniform through the local depth of the layer. Layered models are often used

in conjunction with the hydrostatic approximation. Many phenomena of general

interest and applicability may be described with a system consisting of only one or

two layers, and Chapters 2 to 5 are concerned with such systems.

1.2 Boundary conditions

Most flows considered will be established by time-dependent development from

some known initial state, so that one can see how a given state may be established.

In many situations with stratified fluids, it is possible to obtain steady-state flow

solutions by assuming known flow conditions upstream (or downstream). However,

in two-dimensional (or nearly two-dimensional) situations, there are restrictions

on the properties of the steady upstream velocity and density profiles that may

exist for an obstacle of given height (see Chapter 5), and for those profiles that are

permissible, it may not be obvious how such a flow could be established. It is not

difficult to obtain steady solutions that appear to be unrealistic or unphysical. For this
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1.2 Boundary conditions 9

reason, we concentrate on initial-value problems where the motion is commenced

from simple initial states.

We will mostly be considering isolated topography; that is, topography where the

lower surface becomes horizontal at large distances from the origin (though not nec-

essarily at the same level). Boundary conditions on the flow at large distances from

the topography will embody the assumption that there is no inward-propagating

energy from infinity, other than that specified (which in the cases considered here

is nil).

Since we are mainly concerned with inviscid equations, we will mostly omit

viscous stresses and diffusive effects here in the boundary conditions. In general,

the lower boundary will be a rigid surface specified by z = h(x, y), where h → 0

as x2
+ y

2 → ∞ . For inviscid flow, the boundary condition is that the velocity

component normal to this surface must vanish. For viscous flow, the tangential

component must also vanish. For an isolated obstacle, the maximum value of

h(x, y) is denoted by hm, but this will be abbreviated to h in dimensionless ratios

such as Nh/U. The upper boundary condition may take one of two main forms.

The first is the “finite-depth" form, where the stratified fluid is bounded above by

either a rigid horizontal surface – a “rigid lid", or alternatively by an infinitely deep

homogeneous layer. For the rigid lid, the boundary condition is

w = 0, at z = D. (1.24)

There is no existing term for the upper boundary of a fluid surmounted by a deep

homogeneous layer, and it is defined here to be a pliant surface or pliant boundary.

The appropriate boundary conditions for the stratified fluid with a pliant surface

(a material surface of fluid particles) at z = d = D + η(x, y, t), with homogeneous

fluid above it, are

w = Dη/Dt,

p-continuous





at z = D + η, (1.25)

where here “p-continuous" implies that the pressure at the boundary depends on

its elevation in the static upper layer. If the fluid above is immiscible with the fluid

below, surface tension forces are present, but these are ignored in this work. If the

density of the upper homogeneous fluid is (effectively) zero the pliant surface is

termed a free surface, and (1.25) becomes p = 0.

The second form of upper boundary condition, the “infinite depth" form, applies

to an infinitely deep stratified fluid where internal wave energy may propagate

to great heights. This condition is a “radiation condition", which specifies that the

waves radiate “out the top" without reflection. This means that there is no downward

propagation of wave energy above a certain level (z = D, say).

www.cambridge.org/9781108481526
www.cambridge.org


Cambridge University Press
978-1-108-48152-6 — Topographic Effects in Stratified Flows
Peter G. Baines 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

10 Background

1.3 Conservation relations

For the purposes of this section we take more general forms of the equations for

incompressible flow by adding external forcing and heat gain (or loss) terms, so

that (1.1) and (1.3) become

Du

Dt
= −gẑ −

1

ρ
∇p + F, (1.26)

Dρ

Dt
= − ÛH, (1.27)

and (1.2) still applies. The term F represents some general and unspecified forcing

on the otherwise inviscid flow, and ÛH (in suitable units) represents some heating

process that affects the density without changing the total mass. Both of these

may represent internal processes, such as turbulence or viscous effects, or external

ones such as additional body forces or radiative heating. In the applications to be

considered in this book, F is only non-zero in certain regions, and ÛH is always zero

and is only included in this section for generality.

1.3.1 Total head and energy density conservation

The total head or Bernoulli function R is defined by

R(x, y, z, t) =
1

2
u2
+ gz +

p

ρ
, (1.28)

and from (1.26), (1.27) and (1.2) we obtain

DR

Dt
=

1

ρ

∂p

∂t
+ u · F +

p

ρ2
ÛH. (1.29)

In steady flow without forcing or heating, therefore, R is constant along a streamline

(the Bernoulli integral). On the other hand, if the fluid passes through a region where

there are significant frictional or turbulent stresses (represented by F), such as may

occur in a hydraulic jump (see §2.3.1), the flow on each streamline will be affected

by these stresses, which will reduce R. The same equations may also be used to

derive the equation for the energy density per unit volume, e, where

e =
1

2
ρu2
+ ρgz, (1.30)

in the form

∂e

∂t
= −∇ · (ρuR) + ρu · F +

p ÛH

ρ
. (1.31)

Therefore ρuR constitutes the total energy flux, with the additional terms providing

energy production or dissipation.
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