Contents

Preface xiii
Acknowledgements xv
Introduction xvi

Part I From Particles to Strings 1

1 Classical Relativistic Point Particles 3
 1.1 Minkowski Space 3
 1.2 Particles 5
 1.3 A Non-covariant Action Principle for Relativistic Particles 6
 1.4 Canonical Momenta and Hamiltonian 9
 1.5 Length, Proper Time, and Reparametrisations 9
 1.6 A Covariant Action for Massive Relativistic Particles 11
 1.7 Particle Interactions 12
 1.8 Canonical Momenta and Hamiltonian for the Covariant Action 14
 1.9 A Covariant Action for Massless and Massive Particles 15
 1.10 Literature 17

2 Classical Relativistic Strings 18
 2.1 The Nambu–Goto Action 18
 2.1.1 Action, Equations of Motion, and Boundary Conditions 18
 2.1.2 D-branes 21
 2.1.3 Constraints 23
 2.2 The Polyakov Action 24
 2.2.1 Action, Symmetries, Equations of Motion 24
 2.2.2 Interpretation as a Two-Dimensional Field Theory 26
 2.2.3 The Conformal Gauge 27
 2.2.4 Light-Cone Coordinates 28
 2.2.5 From Symmetries to Conservation Laws 29
 2.2.6 Explicit Solutions – Periodic Boundary Conditions 32
 2.2.7 Explicit Solutions – Neumann Boundary Conditions 34
 2.2.8 Explicit Solutions – Dirichlet Boundary Conditions 35
 2.2.9 Non-oriented Strings 36
 2.2.10 Literature 37

3 Quantised Relativistic Particles and Strings 38
 3.1 Quantised Relativistic Particles 38
 3.2 Field Quantisation and Quantum Field Theory 41
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3 Quantised Relativistic Strings</td>
<td>43</td>
</tr>
<tr>
<td>3.4 Literature on Quantum Field Theory</td>
<td>46</td>
</tr>
<tr>
<td>Part II The World-Sheet Perspective</td>
<td></td>
</tr>
<tr>
<td>4 The Free Massless Scalar Field on the Complex Plane</td>
<td>49</td>
</tr>
<tr>
<td>4.1 The Cylinder and the Plane</td>
<td>49</td>
</tr>
<tr>
<td>4.2 Infinitesimal and Finite Conformal Transformations</td>
<td>51</td>
</tr>
<tr>
<td>4.3 From Commutators to Operator Product Expansions</td>
<td>53</td>
</tr>
<tr>
<td>4.4 From Operators to States</td>
<td>59</td>
</tr>
<tr>
<td>5 Two-Dimensional Conformal Field Theories</td>
<td>63</td>
</tr>
<tr>
<td>5.1 Some Remarks on Conformal Field Theories in General Dimension</td>
<td>63</td>
</tr>
<tr>
<td>5.2 Conformal Primaries</td>
<td>65</td>
</tr>
<tr>
<td>5.2.1 Definition of Conformal Primaries, Holomorphic, and Chiral Fields</td>
<td>65</td>
</tr>
<tr>
<td>5.2.2 Hermitian Conjugation</td>
<td>67</td>
</tr>
<tr>
<td>5.2.3 Operator Products and Commutators</td>
<td>68</td>
</tr>
<tr>
<td>5.3 Energy-Momentum Tensor and Virasoro Algebra</td>
<td>69</td>
</tr>
<tr>
<td>5.4 The State – Operator Correspondence</td>
<td>72</td>
</tr>
<tr>
<td>5.4.1 The SL(2, C) Vacuum – Primary States</td>
<td>72</td>
</tr>
<tr>
<td>5.4.2 Highest Weight States</td>
<td>73</td>
</tr>
<tr>
<td>5.4.3 Descendant Fields</td>
<td>74</td>
</tr>
<tr>
<td>5.5 General Aspects of Two-Dimensional Conformal Field Theories</td>
<td>75</td>
</tr>
<tr>
<td>5.5.1 General Discussion of OPEs</td>
<td>75</td>
</tr>
<tr>
<td>5.5.2 Unitary Conformal Field Theories</td>
<td>75</td>
</tr>
<tr>
<td>5.5.3 Null Vectors</td>
<td>76</td>
</tr>
<tr>
<td>5.5.4 Results on Classification</td>
<td>76</td>
</tr>
<tr>
<td>5.6 Literature</td>
<td>77</td>
</tr>
<tr>
<td>Part III The Space-Time Perspective</td>
<td></td>
</tr>
<tr>
<td>6 Partition Functions I</td>
<td>78</td>
</tr>
<tr>
<td>6.1 Partition Functions for Particles and Strings</td>
<td>78</td>
</tr>
<tr>
<td>6.2 The Chiral Partition Function of a Free Boson</td>
<td>81</td>
</tr>
<tr>
<td>7 Covariant Quantisation I</td>
<td></td>
</tr>
<tr>
<td>7.1 Outline of Covariant Quantisation</td>
<td>87</td>
</tr>
<tr>
<td>7.2 The Fock Space</td>
<td>87</td>
</tr>
<tr>
<td>7.3 Implementation of the Constraints</td>
<td>88</td>
</tr>
<tr>
<td>7.4 Mass Eigenstates</td>
<td>90</td>
</tr>
<tr>
<td>7.5 Physical States of the Open String</td>
<td>91</td>
</tr>
<tr>
<td>7.6 The Photon</td>
<td>92</td>
</tr>
<tr>
<td>7.7 The Tachyon</td>
<td>95</td>
</tr>
<tr>
<td>7.8 Literature</td>
<td>98</td>
</tr>
</tbody>
</table>
Contents

8 Intermezzo – Representations of the Poincaré Group ... 99
 8.1 Review of Representations of the Poincaré Group .. 99
 8.2 Group Theoretical Interpretation of the Photon State ... 101
 8.3 Virasoro Constraints, Poincaré Representations, and Effective Field Theory 102
 8.4 Literature ... 103

9 Covariant Quantisation II ... 104
 9.1 The Graviton .. 104
 9.2 The Kalb–Ramond Field (B-Field) ... 108
 9.2.1 Physical States .. 108
 9.2.2 Dualisation of Antisymmetric Tensor Fields ... 109
 9.3 Vertex Operators ... 111
 9.4 The Dilaton .. 112
 9.5 The No-Ghost Theorem ... 114
 9.6 Further Remarks and Literature .. 116

10 Light-Cone Quantisation ... 117
 10.1 Light-Cone Gauge and Light-Cone Quantisation for Particles 117
 10.2 The Light-Cone Gauge for Open Strings ... 118
 10.3 Light-Cone Quantisation for Open Strings ... 119
 10.4 Ground State Energy via ζ-Function Method ... 120
 10.5 Open String Spectrum in the Light-Cone Gauge ... 121
 10.6 Lorentz Covariance in the Light-Cone Gauge ... 122
 10.7 Literature ... 124

11 Partition Functions II .. 125
 11.1 Partition Functions for Massive Particles ... 125
 11.2 Partition Functions for Open Strings ... 127
 11.3 Partition Functions for Closed Strings ... 131
 11.4 Further Remarks and Literature .. 132

Part IV Outlook .. 135

12 Interactions .. 137
 12.1 Amplitudes .. 137
 12.1.1 General Discussion of Amplitudes .. 137
 12.1.2 The Four Scalar Amplitude .. 140
 12.1.3 The Four Graviton Amplitude .. 143
 12.1.4 Effective Actions from Amplitudes ... 144
 12.2 Curved Backgrounds .. 146
 12.2.1 String Action for Curved Backgrounds and Background Fields 146
 12.2.2 Conformal Invariance and the Equations of Motion 148
 12.2.3 Consistent Backgrounds and Background Independence 149
 12.2.4 Marginal Deformations .. 152
 12.3 Further Remarks and Literature .. 153
13 Dimensional Reduction and T-Duality

13.1 Overview 155
13.2 Closed Strings on S^1 156
 13.2.1 Generic Massless States and Their Effective Field Theory 158
 13.2.2 $U(1)$ Gauge Symmetry from the World-Sheet Point of View 161
 13.2.3 Enhanced Symmetries and Extra Massless States 164
 13.2.4 $SU(2)$ Gauge Symmetry from the World-Sheet Point of View 165
 13.2.5 $U(1)$ Gauge Symmetry, Higgs Effect, and Massive Vector Fields 168
 13.2.6 $SU(2)_L \times SU(2)_R$ Gauge Symmetry from the Space-Time Point of View 170
 13.2.7 The Higgs Effect from the World-Sheet Point of View 172
 13.2.8 Partition Functions for Winding States 174
13.3 Closed Strings on S^1/\mathbb{Z}_2 and Orbifolds 177
13.4 T-Duality for Closed Strings 182
13.5 T-duality and Target Space Gauge Symmetries 184
13.6 T-duality for Open Strings 187
13.7 Toroidal Compactification of Closed Strings 191
 13.7.1 The Narain Lattice 191
 13.7.2 T-duality for Toroidal Compactifications 194
 13.7.3 Symmetry Enhancement 196
 13.7.4 Effective Actions for Toroidal Compactifications 200
 13.7.5 Compactification on a Two-Torus 202
 13.7.6 The Buscher Rules 208
13.8 The Vacuum Selection Problem 209
 13.8.1 Beyond Toroidal Compactifications 209
 13.8.2 From Moduli Spaces to the Landscape 210
 13.8.3 The Landscape and the Swampland 212
13.9 Literature 214

14 Fermions and Supersymmetry

14.1 The Supersymmetric Harmonic Oscillator 215
 14.1.1 The Simple Supersymmetric Harmonic Oscillator 216
 14.1.2 Supersymmetrisation of the Light-Cone Hamiltonian 218
14.2 General Discussion of Supersymmetry 219
14.3 Supersymmetric Field Theories in Two Dimensions 223
14.4 The RNS String 226
14.5 Type-II Superstrings 231
14.6 Type-I Superstrings 235
14.7 Heterotic Strings 236
14.8 Looking for the Big Picture 236
14.9 Final Remarks and Literature 237

Appendix A Notation and Conventions 239
Appendix B Units, Constants, and Scales 240
Contents

<table>
<thead>
<tr>
<th>Appendix C</th>
<th>Fourier Series and Fourier Integrals</th>
<th>242</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix D</td>
<td>Modular Forms and Special Functions</td>
<td>244</td>
</tr>
<tr>
<td>Appendix E</td>
<td>Young Tableaux</td>
<td>247</td>
</tr>
<tr>
<td>Appendix F</td>
<td>Gaussian Integrals and Integral Exponential Function</td>
<td>250</td>
</tr>
<tr>
<td>Appendix G</td>
<td>Lie Algebras, Lie Groups, and Symmetric Spaces</td>
<td>253</td>
</tr>
</tbody>
</table>

References 257

Index 263