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1 Classical Relativistic Point Particles

In this chapter, we review classical relativistic point particles and set out our

conventions and notation. Readers familiar with this material can skip through the

chapter and use it as a reference when needed.

1.1 Minkowski Space

According to Einstein’s theory of special relativity, space and time are combined into

‘space-time’, which is modelled by Minkowski space M.1 The elements P, Q, . . . ∈
M are called events. We leave the dimension D of space-time unspecified. Minkowski

space is homogeneous and thus has no preferred origin, which makes it a point

space (affine space) rather than a vector space (linear space). However, displacements

relating events P, Q are vectors,

x =
−−→
PQ ∈ RD, (1.1)

and once we choose a point O ∈ M as the origin of our coordinate system there is a

one-to-one correspondence between events P and position vectors

xP =
−−→
OP. (1.2)

The components

(xμ)μ=0,1,...,D−1 = (x0,�x) , �x = (xi)i=1,...,D−1 (1.3)

of vectors x ∈ RD provide linear coordinates on M. We assume that xi
= 0 is the

world-line of an inertial (force-free) observer, so that x0
= ct is proportional to the

time t measured in the associated inertial system, while xi provide linear coordinates

on space. We will normally use natural units where we set the speed of light to unity,

c = 1.2

To measure the distance between events, we use the indefinite scalar product

x · y = ημνxμyν , (1.4)

on the vector space RD, with Gram matrix

η = (ημν) = �
�
−1 �0 T

�0 1D−1

�
�

. (1.5)

1 For brevity’s sake we will use ‘Minkowksi space’ instead of ‘Minkowski space-time’.
2 Conventions and units are reviewed in Appendices A and B, respectively.3
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4 Classical Relativistic Point Particles

Note that we use the mostly plus convention for the metric η. Since the metric allows

us to identify the vector space RD with its dual, vectors have covariant components

xμ as well as contravariant components xμ, which are related by raising and lowering

indices xμ = ημνx
ν , and xμ = ημνxν , where Einstein’s summation convention is

understood. The corresponding line element on Minkowski space is

ds2
= ημνdxμdxν = −dt2 + d�x2. (1.6)

The most general class of transformations which preserve this line element (its

isometries) are the Poincaré transformations

xμ → Λμνxν + aμ, (1.7)

where a = (aμ) ∈ RD and where Λ = (Λ
μ
ν) is an invertible D × D matrix satisfying

Λ
TηΛ = η. (1.8)

The matrices Λ describe Lorentz transformations, which are the most general linear

transformations preserving the metric. The Lorentz transformations form a Lie group

of dimension 1

2
D(D−1), called the Lorentz group O(1, D−1). ElementsΛ ∈ O(1, D−

1) have determinant detΛ = ±1, and satisfy |Λ0
0
| ≥ 1. The matrices with detΛ = 1

form a subgroup SO(1, D − 1). This subgroup still has two connected components,

sinceΛ0
0
≥ 1 orΛ0

0
≤ −1. The connected component containing the unit matrix 1 ∈

O(1, D − 1) is the connected or proper orthochronous Lorentz group SO0(1, D − 1).

The corresponding Lie algebra is so(1, D − 1).

The Lorentz group and translation group combine into the Poincaré group, or

inhomogeneous Lorentz group, IO(1, D − 1), which is a Lie group of dimension
1

2
D(D + 1). Since Lorentz transformations and translations do not commute, the

Poincaré group is not a direct product. The composition law

(Λ, a) ◦ (Λ′, a′) = (ΛΛ′, a + Λa′) (1.9)

shows that the Lorentz group operates on the translation group by the fundamental

or vector representation. Therefore, the Poincaré group is the semi-direct product of

the Lorentz and translation group,

IO(1, D − 1) = O(1, D − 1) ⋉ RD. (1.10)

Since the Minkowski metric (1.6) is defined by an indefinite scalar product, the

square-distance or square-norm x2
= x · x can be positive, zero, or negative. For

terminological simplicity, we will henceforth refer to x2
= x · x as the norm or length

of x, omitting the qualifier ‘square’. This convention will be applied whenever we

deal with an indefinite scalar product.

Vectors are classified as time-like, light-like (also called null), or space-like

according to their norm:

x time-like ⇔ x · x < 0,

x light-like ⇔ x · x = 0,

x space-like ⇔ x · x > 0.

Since signals can only travel with speed v ≤ 1(= c), this encodes information

about the causal relations between events. Two events P, Q are called time-like,
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5 Particles

light-like, or space-like relative to each other, if the displacement vector x =
−−→
PQ

is time-like, light-like, or space-like, respectively. Only non-space-like events can

be causally related, and their causal order is invariant under orthochronous Poincaré

transformations, which exclude the time inversion T : t → −t,�x → �x. Since some

particle interactions are not invariant under the space inversion P : t→ t,�x→ −�x, the

symmetry group relevant for particle physics is the proper orthochronous Poincaré

group SO0(1, D−1)⋉RD. This is the connected component of the unit element of the

full Poincaré group, which has three further connected components which contain T,

P, and their product TP.

1.2 Particles

The fundamental constituents of matter are usually modelled as particles, that is, as

objects that are localised and can be characterised by a small number of parameters,

such as mass, spin, and charges. While some particles are bound states of others,

the standard model of particle physics is based on a list of particles, assumed to be

elementary in the sense that they do not have constituents and, therefore, no internal

excitations. In classical mechanics, such particles are modelled as mathematical

points. The motion of such a point particle, or particle for short, is described by a

parametrised curve called the world-line. If we restrict ourselves to inertial frames, it

is natural to choose the coordinate time t as the curve parameter. Then, the world-line

of a particle is a parametrised curve

C : I→ M : t 	→ x(t) = (xμ (t)) = (t,�x(t)), (1.11)

where I ⊂ R is the time interval for which the particle is observed. I = R is included

as a limiting case.

The velocity of a particle relative to an inertial frame is

�v =
d�x

dt
, (1.12)

and v =

√
�v · �v ≥ 0 is the speed. Since t and �v are not covariant quantities (Lorentz

tensors), it is useful to formulate relativistic mechanics using the Lorentz vector xμ

and its derivatives with respect to a curve parameter which is a Lorentz scalar. This

works differently for massive and for massless particles.

The inertial mass m of a particle measures its resistance against a change of

velocity. Massive particles, m > 0, propagate with velocities v < 1 and have time-

like world-lines, that is world-lines where the tangent vector is time-like everywhere.

Massless particles, m = 0, propagate with velocity v = 1 and have light-like

world-lines. Poincaré symmetry also admits tachyons, that is, particles with negative

mass-squared, m2
< 0, which propagate with velocity v > 1 and have space-like

world-lines. Such tachyons are discarded because they would allow a-causal effects,

such as sending signals backwards in time. In quantum field theory, tachyons are

re-interpreted as indicating instabilities resulting from expanding a theory around

a local maximum of the potential. This is a physical effect and does not involve

particles propagating with superluminal speed (see Section 7.7).
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6 Classical Relativistic Point Particles

For massive particles, we can use the proper time τ as a curve parameter.

Infinitesimally, the relation between proper time and coordinate time is

− dτ2
= [−dt2 + d�x2] |C =

⎡⎢⎢⎢⎢⎣
−1 +

(

d�x

dt

)2⎤⎥⎥⎥⎥⎦
dt2 ⇒ dτ = dt

√
1 − �v 2. (1.13)

Since τ is, by construction, Lorentz invariant, the relativistic velocity

ẋμ =
dxμ

dτ
=

(

dt

dτ
,

d�x

dt

dt

dτ

)

=

1
√

1 − �v 2
(1,�v) (1.14)

is a Lorentz vector. Moreover, it is a time-like unit tangent vector to the world-line,

since ẋ2
= ẋμẋμ = −1. The norm is in particular constant, which makes τ an affine

curve parameter. The name ‘affine’ curve parameter reflects the fact that such curve

parameters are unique up to affine transformations, τ 	→ aτ + b, a, b ∈ R, a � 0.

By further differentiation, we obtain the relativistic acceleration,

aμ = ẍμ. (1.15)

Newton’s first law states that force-free particles are unaccelerated relative to inertial

frames.

The relativistic momentum of a particle is

pμ = mẋμ = (p0,�p) =

(

m
√

1 − �v 2
,

m�v
√

1 − �v 2

)

. (1.16)

The component p0
= E is the total energy of the particle. The norm of pμ is minus

its mass squared

pμpμ = −m2
= −E2

+ �p 2. (1.17)

Note the minus sign which is due to us using the mostly plus convention for the

metric.

Force-free particles propagate with constant velocity, which means that their

world-lines are straight lines. The relativistic version of Newton’s second law states

that motion under a force is determined by the equation

dpμ

dτ
= m

d2xμ

dτ2
= fμ, (1.18)

where the Lorentz vector fμ is the relativistic force. Note that we assume that the

mass m is constant, which is satisfied for stable elementary particles but may not

hold in other applications of relativistic mechanics (e.g., for the motion of a rocket

which expels fuel).

1.3 A Non-covariant Action Principle for Relativistic Particles

The equations of motion of all fundamental physical theories can be obtained from

variational principles. In this approach, a theory is defined by specifying its action

which is a functional on the configuration space. The equations of motion are the

Euler–Lagrange equations obtained by imposing that the action is invariant under

infinitesimal variations of the path, with the initial and final position kept fixed.
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7 A Non-covariant Action Principle for Relativistic Particles

For a point particle, the configuration space is parametrised by its position �x and

velocity �v. The action functional takes the form

S[�x] =

∫

dt L(�x(t),�v(t)). (1.19)

In principle, the Lagrangian L can have an explicit dependence on time, corre-

sponding to a time-dependent potential or external field. In fundamental theories, we

assume the invariance of the field equations under time-translations, which forbids

an explicit time dependence of L.

The action for a free, massive, relativistic particle is proportional to the proper

time along the world-line, and given by minus the product of its mass and the proper

time:

S = −m

∫

dt
√

1 − �v 2. (1.20)

The minus sign has been introduced so that L has the conventional form L = T−V

where T is the part quadratic in time derivatives, that is, the kinetic energy. The

remaining part V is the potential energy. We work in units where the speed of

light and the reduced Planck constant have been set to unity, c = 1, � = 1. In

such natural units the action S is dimensionless. To verify that the action principle

reproduces the equation of motion (1.18), we consider the motion �x(t) of a particle

between the initial postion �x1 = �x(t1) and the final position �x2 = �x(t2). Then,

we compute the first order variation of the action under infinitesimal variations

�x→ �x+δ�x, which are arbitrary, except for the boundary conditions δ�x(ti) = 0, i = 1, 2

(see Figure 1.1). To compare the initial and deformed path we Taylor expand in

δ�x(t):

S[�x(t) + δ�x(t)] = S[�x(t),�v(t)] + δS[�x(t),�v(t)] + · · · (1.21)

where the omitted terms are of quadratic and higher order in δ�x(t). The equations of

motion are found by imposing that the first variation δS vanishes.

Fig. 1.1 The action principle selects the paths for which the action is stationary under variation. The endpoints are

kept fixed.
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8 Classical Relativistic Point Particles

Practical manipulations are most easily performed using the following observa-

tions:

1. The variation δ acts like a derivative. For example, for a function f(�x) we have the

chain rule

δf = ∂ifδx
i, (1.22)

as is easily verified by Taylor expanding f(�x+ δ�x). Similarly, sum, constant factor,

product, and quotient apply, for example, δ(fg) = δfg + fδg.

2. �v = d�x
dt

is not an independent quantity, and therefore

δ�v = δ
d�x

dt
=

d

dt
δ�x. (1.23)

3. To find δS, we need to collect all terms proportional to δ�x. Derivatives acting

on δ�x have to be removed through integration by parts which creates boundary

terms. If such boundary terms are not automatically zero, we must impose that

they vanish which restricts the class of configurations which qualify as solutions.

Solving the variational problem for the action (1.20), we obtain the equation of

motion

d

dt

m�v
√

1 − �v 2
=

d

dt
�p = �0, (1.24)

which is equivalent to (1.18) in the absence of forces, fμ = 0.

Remark: When performing the variation without specifying the Lagrangian L,

one obtains the Euler–Lagrange equations

∂L

∂xi
− d

dt

∂L

∂vi
= 0. (1.25)

For L = −m
√

1 − �v 2 this is easily seen to give (1.24).3

Exercise 1.3.1 Verify that the variation of (1.20) takes the form

δS = −
∫ t2

t1

(

d

dt

mvi√
1 − �v 2

)

δxidt +
mvi√
1 − �v 2

δxi
�����

t2

t1

. (1.26)

Does the boundary term impose any conditions on the dynamics?

Exercise 1.3.2 Verify that (1.24) is equivalent to (1.18) with fμ = 0. Then, extend

this to the case where a force term is present. This requires one to know,

or to derive, the relation between the relativistic force fμ and the non-

relativistic expression �F. Show that the non-covariant version of Newton’s

second law,

d�p

dt
= �F , where �p =

m�v
√

1 − v2
(1.27)

is equivalent to (1.18).

3 In my opinion, it is more natural, convenient, and insightful to obtain the equations of motion for a given

concrete theory by varying the corresponding action, as done above, instead of plugging the Lagrangian

into the Euler–Lagrange equations. This procedure reminds one that there may be boundary terms that

one has to worry about, as we will see when replacing particles by strings.
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9 Length, Proper Time, and Reparametrisations

1.4 Canonical Momenta and Hamiltonian

We now turn to the Hamiltonian description of the relativistic particle. In the

Lagrangian formalism we use the configuration space variables (�x,�v) = (xi, vi). In

the Hamiltonian formalism, the velocity �v is replaced by the canonical momentum

πi :=
∂L

∂vi

. (1.28)

For the Lagrangian L = −m
√

1 − �v 2, the canonical momentum agrees with the

kinetic momentum, �π = �p = (1 − �v 2)−1/2m�v. However, conceptually canoncial

and kinetic momentum are different quantities. A standard example where the two

quantities are not equal is a charged particle in a magnetic field (see Section 13.6,

i.p. formula (13.169)).

The Hamiltonian H(�x, �π) is obtained from the Lagrangian L(�x,�v) by a Legendre

transformation:

H(�x, �π) = �π · �v − L(�x,�v(�x, �π)). (1.29)

For L = −m
√

1 − �v 2 the Hamiltonian is equal to the total energy:

H = �π · �v − L = �p · �v − L =
m

√
1 − �v 2

= p0
= E. (1.30)

Describing relativistic particles using the action (1.20) has the following disadvan-

tages:

• We can describe massive particles, but photons, gluons, and the hypothetical

gravitons underlying gravity are believed to be massless. How can we describe

massless particles?

• The independent variables �x,�v are not Lorentz vectors. Therefore, our formalism

lacks manifest Lorentz covariance. How can we formulate an action principle that

is Lorentz covariant?

• We have picked a particular curve parameter for the world-line, namely the inertial

time with respect to a Lorentz frame. While this is a natural choice, ‘physics’, that

is, observational data, cannot depend on how we label points on the world-line.

How can we formulate an action principle that is manifestly covariant with respect

to reparametrisations of the world-line?

We will answer these questions in reverse order.

1.5 Length, Proper Time, and Reparametrisations

To prepare for the following, we first discuss general curve parameters and

reparametrisations. Consider a smooth parametrised curve in Minkowski space,

C : I ∋ σ −→ xμ (σ) ∈ M, (1.31)
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10 Classical Relativistic Point Particles

Fig. 1.2 The world-line of a particle is described by a parametrised curve, that is, by a map from a parameter

interval into space-time. Physical quantities do not depend on the parametrisation.

where σ is an arbitrary curve parameter, taking values in an interval I ⊂ R
(Figure 1.2).

We can reparametrise the curve by introducing a new curve parameter σ̃ ∈ Ĩ which

is related to σ by an invertible map

σ → σ̃(σ) , where
dσ̃

dσ
� 0. (1.32)

While C : I→ M and C̃ : Ĩ→ M are different maps, they have the same image inM

and we regard them as different descriptions (parametrisations) of the same curve.

The quantity dσ̃/dσ is the Jacobian of this reparametrisation.

Often, one imposes the stronger condition

dσ̃

dσ
> 0, (1.33)

which means that the orientation (direction) of the curve is preserved.

The tangent vector field of the curve is

x′ μ :=
dxμ

dσ
. (1.34)

A curve C : I→ M is called space-like, light-like, or space-like if its tangent vector

field is space-like, light-like, or space-like, respectively, for all σ ∈ I. This property

is reparametrisation invariant.

For a space-like curve, I = [σ1, σ2] → M, the length (or ‘proper length’) is

defined as

L =

∫ σ2

σ1

dσ

√

ημν
dxμ

dσ

dxν

dσ
. (1.35)

For a time-like curve, we can define a ‘length’ by

τ(σ1, σ2) =

∫ σ2

σ1

dσ

√

−ημν
dxμ

dσ

dxν

dσ
, (1.36)

and this quantity is precisely the proper time for a particle that has this curve as

its world-line. We note that the proper length and proper time are distinguished

affine curve parameters, characterised by the tangent vector field having unit norm.

For light-like curves there is no analogous quantity, but we will see that there still

is a distinguished class of affine curve parameters for the world-lines of massless

particles.
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11 A Covariant Action for Massive Relativistic Particles

Exercise 1.5.1 Verify that the length (1.35) of a space-like curve is reparametrisation

invariant. Why does this not depend on whether the reparametrisation pre-

serves the orientation of the curve?

Exercise 1.5.2 Show that the tangent vector field dxμ

dτ for the curve parameter τ defined

by (1.36) has norm ẋ2
= −1, thus verifying that τ is the proper time.

1.6 A Covariant Action for Massive Relativistic Particles

Using the concepts of the previous section, we introduce the following action:

S[x] = −m

∫

dσ

√

−ημν
dxμ

dσ

dxν

dσ
. (1.37)

Up to the constant factor −m, the action is the proper time for the motion

of the particle along the world-line. We use an arbitrary curve parameter σ,

and configuration space variables (x, x′) = (xμ, x′μ), which transform covariantly

under Lorentz transformations. The action (1.37) has the following symmetries

(invariances):

• The action is invariant under reparametrisations σ → σ̃(σ) of the world-line.

• The action is invariant under Poincaré transformations of space-time.

To verify that the new action (1.37) leads to the same field equations as (1.20), we

perform the variation xμ → xμ + δxμ and obtain:

δS

δxμ
= 0⇔ d

dσ

(

m x′ μ
√
−x′ · x′

)

= 0. (1.38)

To get the physical interpretation, we choose the curve parameter σ to be the proper

time τ:

d

dτ

(

m
dxμ

dτ

)

= mẍμ = 0, (1.39)

where a ‘dot’ denotes the derivative with respect to proper time. This is indeed (1.18)

with fμ = 0.

The general solution of this equation, which describes the motion of a free massive

particle in Minkowski space is the straight world-line

xμ (τ) = xμ (0) + ẋμ (0)τ. (1.40)

Remark: Reparametrisations vs Diffeomorphisms. Reparametrisation invariance

is also referred to as diffeomorphism invariance. We use the term reparametrisation,

rather than diffeomorphism, to emphasise that we interpret the map σ 	→ σ̃ passively,

that is, as a change parametrisation. In contrast, an active transformation maps a

given point to another point. The expressions for passive and active transformation

agree up to an overall minus sign, as we will see in later examples, in particular, in

Exercise 5.2.2.
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12 Classical Relativistic Point Particles

Remark: ‘Local’ vs ‘global’ in mathematical and physical terminology. In mathe-

matics, ‘local’ refers to statements which hold on open neighbourhoods around each

point, whereas ‘global’ refers to statements holding for the whole space. In contrast,

physicists call symmetries ‘global’ or ‘rigid’ if the transformation parameters are

independent of space-time, and ‘local’ if the transformation parameters are functions

on space-time. In the case of the point particle action, Poincaré transformations

are global symmetries, while reparametrisations are local. I will try to reduce the

risk of confusion by saying ‘rigid symmetry’ rather than ‘global symmetry’, and

when a symmetry is referred to as local, it is meant in the physicist’s sense. Also,

it is common for physicists to talk about statements which are true locally (in the

mathematician’s sense) but not necessarily true globally, using ‘global terminology’.4

1.7 Particle Interactions

So far we have considered free particles. Interactions can be introduced by adding

terms which couple the particle to external fields. The most important examples are

the following:

• If the force fμ has a potential, fμ = −∂μV(x), then the equation of motion (1.18)

follows from the action

S = −m

∫ √
−ẋ2dτ −

∫

V(x(τ))dτ. (1.41)

• If fμ is the Lorentz force acting on a particle with charge q, that is fμ = qFμν ẋν ,

then the action is

S = −m

∫ √
−ẋ2dτ + q

∫

Aμdxμ. (1.42)

In the second term, the vector potential Aμ is integrated along the world-line of

the particle
∫

Aμdxμ =

∫

Aμ (x(τ))
dxμ

dτ
dτ. (1.43)

The resulting equation of motion is

mẍμ = qFμν ẋ
ν , (1.44)

where Fμν = ∂μAν − ∂νAμ is the field strength tensor. Equation (1.44) is the

manifestly covariant version of the Lorentz force

d�p

dt
= q
(

�E + �v × �B
)

. (1.45)

4 An example where the distinction between local and global aspects is relevant will be given later in

Section 4.2 when we discuss the actions of the conformal Lie algebra and of the conformal group on

the string world-sheet.
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