The Conway–Maxwell–Poisson Distribution

While the Poisson distribution is a classical statistical model for count data, the distributional model hinges on the constraining property that its mean equals its variance. This text instead introduces the Conway–Maxwell–Poisson distribution and motivates its use in developing flexible statistical methods based on its distributional form.

This two-parameter model not only contains the Poisson distribution as a special case but, in its ability to account for data over- or under-dispersion, encompasses both the geometric and Bernoulli distributions. The resulting statistical methods serve in a multitude of ways, from an exploratory data analysis tool to a flexible modeling impetus for varied statistical methods involving count data.

The first comprehensive reference on the subject, this text contains numerous illustrative examples demonstrating R code and output. It is essential reading for academics in statistics and data science, as well as quantitative researchers and data analysts in economics, biostatistics and other applied disciplines.

KIMBERLY F. SELLERS is Professor in the Department of Mathematics and Statistics at Georgetown University and a researcher at the U.S. Census Bureau. Her work has contributed to count data research and software for the last 15 years. She is a Fellow of the American Statistical Association and an Elected Member of the International Statistical Institute.

INSTITUTE OF MATHEMATICAL STATISTICS MONOGRAPHS

Editorial Board Mark Handcock, General Editor (UCLA) John Aston (University of Cambridge) Arnaud Doucet (University of Oxford) Ramon van Handel (Princeton University)

IMS Monographs are concise research monographs of high quality on any branch of statistics or probability of sufficient interest to warrant publication as books. Some concern relatively traditional topics in need of up-to-date assessment. Others are on emerging themes. In all cases the objective is to provide a balanced view of the field.

Other Books in the Series

- 1. Large-Scale Inference, by Bradley Efron
- 2. Nonparametric Inference on Manifolds, by Abhishek Bhattacharya and Rabi Bhattacharya
- 3. The Skew-Normal and Related Families, by Adelchi Azzalini
- 4. Case-Control Studies, by Ruth H. Keogh and D. R. Cox
- 5. Computer Age Statistical Inference, by Bradley Efron and Trevor Hastie
- 6. *Computer Age Statistical Inference (Student Edition)*, by Bradley Efron and Trevor Hastie
- 7. *Stable Lèvy Process via Lamperti-Type Representations*, by Andreas E. Kyprianou and Juan Carlos Pardo

The Conway–Maxwell–Poisson Distribution

KIMBERLY F. SELLERS Georgetown University

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781108481106

DOI: 10.1017/9781108646437

© Kimberly F. Sellers 2023

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2023

A catalogue record for this publication is available from the British Library

ISBN 978-1-108-48110-6 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> To those that "count" most in my life: My family, especially my son

Contents

	List of Figures pag	ge xii
	List of Tables	xiv
	Preface	xxi
	Acknowledgments	xxiii
1	Introduction: Count Data Containing Dispersion	1
	1.1 Poisson Distribution	2
	1.1.1 R Computing	4
	1.2 Data Over-dispersion	5
	1.2.1 R Computing	7
	1.3 Data Under-dispersion	10
	1.3.1 R Computing	11
	1.4 Weighted Poisson Distributions	16
	1.5 Motivation, and Summary of the Book	18
2	The Conway-Maxwell-Poisson (COM-Poisson) Distribution	22
	2.1 The Derivation/Motivation: A Flexible Queueing Model	23
	2.2 The Probability Distribution	25
	2.2.1 R Computing	28
	2.3 Distributional and Statistical Properties	35
	2.3.1 R Computing	39
	2.4 Parameter Estimation and Statistical Inference	40
	2.4.1 Combining COM-Poissonness Plot with Weighted	
	Least Squares	40
	2.4.2 Maximum Likelihood Estimation	41
	2.4.3 Bayesian Properties and Estimation	42
	2.4.4 R Computing	43
	2.4.5 Hypothesis Tests for Dispersion	50

viii		Contents	
	2.5	Generating Data 2.5.1 Inversion Method	52 52
		2.5.2 Rejection Sampling	53
		2.5.3 R Computing	56
	2.6	Reparametrized Forms	57
	2.7	COM–Poisson Is a Weighted Poisson Distribution	64
	2.8	Approximating the Normalizing Term, $Z(\lambda, \nu)$	65
	2.9	Summary	69
3	Dis	tributional Extensions and Generalities	71
	3.1	The Conway–Maxwell–Skellam (COM–Skellam or CMS)	
		Distribution	72
	3.2	The Sum-of-COM–Poissons (sCMP) Distribution	75
	3.3	Conway-Maxwell Inspired Generalizations	
		of the Binomial Distribution	77
		3.3.1 The Conway–Maxwell–binomial (CMB) Distribution	78
		3.3.2 The Generalized Conway–Maxwell–Binomial	
		Distribution	81
		3.3.3 The Conway–Maxwell–multinomial (CMM)	
		Distribution	83
		3.3.4 CMB and CMM as Sums of Dependent Bernoulli	
		Random Variables	86
		3.3.5 R Computing	87
	3.4	CMP-Motivated Generalizations of the Negative Binomial	
		Distribution	93
		3.4.1 The Generalized COM–Poisson (GCMP) Distribution	93
		3.4.2 The COM–Negative Binomial (COMNB) Distribution	98
		3.4.3 The COM-type Negative Binomial (COMtNB)	
		Distribution	101
		3.4.4 Extended CMP (ECMP) Distribution	106
	3.5	Conway–Maxwell Katz (COM–Katz) Class of Distributions	112
	3.6	Flexible Series System Life-Length Distributions	113
		3.6.1 The Exponential-CMP (ExpCMP) Distribution	114
		3.6.2 The Weibull–CMP (WCMP) Distribution	117
	3.7	CMP-Motivated Generalizations of the Negative	
		Hypergeometric Distribution	119
		3.7.1 The COM-negative Hypergeometric (COMNH)	
		Distribution, Type I	120
		3.7.2 The COM–Poisson-type Negative Hypergeometric	
		(CMPtNH) Distribution	120

		Contents	ix
		3.7.3 The COM-Negative Hypergeometric (CMNH)	
		Distribution, Type II	121
	3.8	Summary	123
4	Mu	ltivariate Forms of the COM–Poisson Distribution	124
	4.1	Trivariate Reduction	125
		4.1.1 Parameter Estimation	127
		4.1.2 Hypothesis Testing	128
		4.1.3 Multivariate Generalization	129
	4.2	Compounding Method	131
		4.2.1 Parameter Estimation	133
		4.2.2 Hypothesis Testing	134
		4.2.3 R Computing	135
		4.2.4 Multivariate Generalization	137
	4.3	The Sarmanov Construction	138
		4.3.1 Parameter Estimation and Hypothesis Testing	140
		4.3.2 Multivariate Generalization	140
	4.4	Construction with Copulas	141
	4.5	Real Data Examples	143
		4.5.1 Over-dispersed Example: Number of Shunter Accidents	143
		4.5.2 Under-dispersed Example: Number of All-Star	
		Basketball Players	147
	4.6	Summary	150
5	CO	M–Poisson Regression	153
	5.1	Introduction: Generalized Linear Models	154
		5.1.1 Logistic Regression	154
		5.1.2 Poisson Regression	155
		5.1.3 Addressing Data Over-dispersion: Negative Binomial	
		Regression	156
		5.1.4 Addressing Data Over- or Under-dispersion:	
		Restricted Generalized Poisson Regression	157
	5.2	Conway-Maxwell-Poisson (COM-Poisson) Regression	157
		5.2.1 Model Formulations	158
		5.2.2 Parameter Estimation	160
		5.2.3 Hypothesis Testing	173
		5.2.4 R Computing	173
		5.2.5 Illustrative Examples	178
	5.3	Accounting for Excess Zeroes: Zero-inflated	
		COM–Poisson Regression	190
		5.3.1 Model Formulations	191

Cambridge University Press & Assessment
978-1-108-48110-6 — The Conway–Maxwell–Poisson Distribution
Kimberly F. Sellers
Frontmatter
More Information

х	Contents	
	5.3.2 Parameter Estimation	194
	5.3.3 Hypothesis Testing	195
	5.3.4 A Word of Caution	196
	5.3.5 Alternative Approach: Hurdle Model	197
	5.4 Clustered Data Analysis	197
	5.5 R Computing for Excess Zeroes and/or Clustered Data	202
	5.5.1 Examples	203
	5.6 Generalized Additive Model	211
	5.7 Computing via Alternative Softwares	213
	5.7.1 MATLAB Computing	213
	5.7.2 SAS Computing	213
	5.8 Summary	217
6	COM-Poisson Control Charts	218
	6.1 CMP-Shewhart Charts	219
	6.1.1 CMP Control Chart Probability Limits	220
	6.1.2 R Computing	221
	6.1.3 Example: Nonconformities in Circuit Boards	223
	6.1.4 Multivariate CMP-Shewhart Chart	224
	6.2 CMP-inspired EWMA Control Charts	226
	6.2.1 COM-Poisson EWMA (CMP-EWMA) Chart	227
	6.2.2 CMP-EWMA Chart with Multiple Dependent State	
	Sampling	229
	6.2.3 CMP-EWMA Chart with Repetitive Sampling	231
	6.2.4 Modified CMP-EWMA Chart	233
	6.2.5 Double EWMA Chart for CMP Attributes	234
	6.2.6 Hybrid EWMA Chart	237
	6.3 COM-Poisson Cumulative Sum (CUSUM) Charts	238
	6.3.1 CMP-CUSUM charts	239
	6.3.2 Mixed EWMA-CUSUM for CMP Altribute Data	243
	6.5 COM Deisson Chart Via Prograssiva Maan Statistia	244
	6.6 Summary	240 240
_		249
7	COM–Poisson Models for Serially Dependent Count Data	251
	7.1 CMP-motivated Stochastic Processes	251
	7.1.1 The Homogeneous CMP Process	251
	7.1.2 Copula-based CMP Markov Models	257
	7.2 Laterative Decomposition Markov Models	259
	7.2 Intensity Parameter Time Series Modeling	263
	1.2.1 AUMP-INUAKUH	203

8

Cambridge University Press & Assessment
978-1-108-48110-6 — The Conway–Maxwell–Poisson Distribution
Kimberly F. Sellers
Frontmatter
More Information

Contents	xi
7.2.2 MCMP1-ARMA	265
7.3 Thinning-Based Models	267
7.3.1 Autoregressive Models	268
7.3.2 Moving Average Models	273
7.4 CMP Spatio-temporal Models	280
7.5 Summary	282
COM-Poisson Cure Rate Models	284
8.1 Model Background and Notation	286
8.2 Right Censoring	288
8.2.1 Parameter Estimation Methods	288
8.2.2 Quantifying Variation	294
8.2.3 Simulation Studies	294
8.2.4 Hypothesis Testing and Model Discernment	295
8.3 Interval Censoring	298
8.3.1 Parameter Estimation	299
8.3.2 Variation Quantification	300
8.3.3 Simulation Studies	301
8.3.4 Hypothesis Testing and Model Discernment	301
8.4 Destructive CMP Cure Rate Model	301
8.4.1 Parameter Estimation	304
8.4.2 Hypothesis Testing and Model Discernment	306
8.5 Lifetime Distributions	306
8.6 Summary	310
References	312
Index	327

Figures

1.1	Poisson probability mass function illustrations for	
	$\lambda \in \{0.3, 1, 3, 10\}.$	page 3
1.2	Negative binomial distribution illustrations for values of $(r, p) \in$	
	$\{(5, 0.4), (10, 0.7), (15, 0.8), (60, 0.95), (300, 0.99)\}$ and the	
	Poisson($\lambda = 3$) probability mass function. This series of density	
	plots nicely demonstrates the distributional convergence of the	
	negative binomial to the Poisson as $r \to \infty$ and $p \to 1$ such that	
	$r(1-p) \to \lambda.$	8
1.3	Generalized Poisson probability mass function illustrations for	
	values of $\lambda_1 > 0$, and dispersion parameter $\lambda_2 \in \{-0.5, 0, 0.5\}$.	
	For $\lambda_1 > 0$ and $-1 < \lambda_2 < 1$ such that $\lambda_2 > (<)0$ denotes	
	data over-dispersion (under-dispersion), the generalized Poisson	
	distribution has the mean $E(X) = \frac{\lambda_1}{1-\lambda_2}$ and variance $V(X) = \frac{\lambda_1}{(1-\lambda_2)}$	$\frac{1}{3}$. 12
1.4	The probability mass function $P(X = x)$ created for $x \in \{0,, 20\}$	}
	for a generalized Poisson distribution (a) via dgenpois (HMMpa)	
	with $\lambda_1 = 3$, $\lambda_2 = -0.5$; and (b) via dgpois (LaplacesDemon)	
	with $\lambda = 2$, $\omega = -0.5$. The resulting plots should be identical	
	because $\lambda_1 = \lambda(1 - \omega)$ and $\lambda_2 = \omega$.	14
2.1	CMP probability mass function illustrations for the values of $\boldsymbol{\lambda}$	
	and $\nu.$ Respective illustrative plots define the same value for λ	
	when $\nu > 0$ for easy distributional comparisons, while for $\nu = 0$,	
	λ must be constrained to be less than 1; $\nu < (>)1$ signifies data	
	over-dispersion (under-dispersion) relative to the Poisson ($\nu = 1$)	
	distribution.	27
2.2	COM-Poissonness plot associated with Macaulay (1923) data.	48
3.1	COM–Skellam($\lambda_1 = \lambda_2 = 5, \nu$) probability mass function	
	illustrations for the values of $\nu \in \{0.25, 0.5, 1, 2, 4, 10\}$.	73

Cambridge University Press & Assessment
978-1-108-48110-6 — The Conway–Maxwell–Poisson Distribution
Kimberly F. Sellers
Frontmatter
More Information

List of Figures	xiii
3.2 sCMP($m, \lambda = 1, \nu$) probability mass function illustrations for the	
values of $m \in \{2, 3, 4, 5\}$ and $\nu \in \{0.5, 1, 2\}$.	76
5.1 Trace and density plots associated with textile fabrics example for	
(a) $\boldsymbol{\beta}$ (b) $\boldsymbol{\gamma}$; RL = RollLength.	189
5.2 Credible intervals associated with textile fabrics example for (a)	
β (b) γ ; RL = RollLength. Inner and outer intervals, respectively,	
represent 68% and 95% credible intervals.	190
6.1 Control chart associated with nonconformities data analysis via	
CMPControl package: corresponding R code and output supplied	
in Code 6.1. Lower CMP-Shewhart bound is Winsorized to 0,	
while the lower CMP probability bound equals 0.	223

Tables

1.1	Weight functions associated with various examples of weighted	
	Poisson distributions. pa	ge 17
1.2	Levels of model support based on AIC difference values,	
	$\Delta_i = AIC_i - AIC_{min}$, for Model <i>i</i> (Burnham and Anderson, 2002).	21
2.1	Special cases of the CMP parametrization distribution.	26
2.2	Available R functions for CMP computing.	29
2.3	(Cumulative) probability computations via various R packages and	
	their respective functions, illustrated assuming a $CMP(\lambda = 4, \nu)$	
	random variable X evaluated at the value 2 for $\nu \in \{0.3, 1, 3, \dots, \nu\}$	
	30}. Functions produce equal calculations when rounded to three	
	decimal places.	32
2.4	Probability $P(X = 2)$ and cumulative probability $P(X \le 2)$	
	computations for the CMP($\lambda = 4, \nu = 1$) = Poisson($\lambda = 4$)	
	distributed random variable X. CMP computations determined	
	using compoisson (Dunn, 2012), CompGLM (Pollock, 2014a), and	
	COMPoissonReg (Sellers et al., 2019); Poisson results obtained	
	using the stats package. All calculations rounded to six decimal	
	places.	33
2.5	Probability $P(X = 2)$ and cumulative probability $P(X \le 2)$	
	computations for the CMP($\lambda = 0.25, \nu = 0$) = Geom($p = 0.75$)	
	distributed random variable X. CMP computations determined	
	using compoisson (Dunn, 2012), CompGLM (Pollock, 2014a), and	
	COMPoissonReg (Sellers et al., 2019); geometric results obtained	
	using the stats package. All calculations rounded to six decimal	
	places.	33
2.6	Hypothetical frequency table for count data. These data are used	
	for illustrative analyses in Code 2.1.	34

	List of Tables	xv
2.7	Quantile determinations x such that $P(X \le x) \ge 0.9$ for the CMP($\lambda = 3, \nu$) distributed random variable X, where $\nu \in \{0.3, 1, 3, 30\}$. Computations conducted via the qcmp function (COMPoissonReg).	35
2.8	Observed versus CMP estimated frequency of occurrences of the articles "the," "a," and "an" in five-word samples from "Essay on Milton" by Macaulay (1923) (Oxford edition). CMP estimated frequencies obtained based on the maximum likelihood estimators $\hat{x} = x^2 + 2^{29} (4)$	45
2.9	$\lambda \approx 1.0995$ and $\nu \approx 3.2864$. Observed versus CMP estimated frequency of the number of	45
2.10	children born to a random sample of females (Winkelmann, 1995). Available R functions based on reparametrized COM–Poisson	49
2.11	models. Probability computations (to six decimal places) via dcmpois (combayes) and dcomp (mpcmp) for ACMP($\mu_* = \lambda^{1/\nu} = 4^{1/\nu}, \nu$) and MCMP1($\mu_* \nu$) = CMP($\lambda = 4, \nu$) respectively and cumulative	62
	probability pcomp for the MCMP1 distribution.	64
3.1	Probability, normalizing constant, expected value, and variance calculations (rounded to three decimal places) for	
3.2	CMB($m = 10, p = 0.75, v$) distributions where $v = \{0, 1, 2\}$. Probability, normalizing constant, expected value, and variance calculations (rounded to three decimal places) for CMM ₂ ($m = 10$; $n = -(0, 1, 0, 35, 0, 55)$; v) distributions	89
	where $\nu = \{0, 1, 2\}$.	90
3.3	Summary of CMP-motivated generalizations of the negative binomial (NB) distribution – the generalized COM–Poisson (GCMP), the Conway-Maxwell-negative binomial (COMNB), the Conway-and-Maxwell-type negative binomial (COMtNB), and the extended Conway–Maxwell–Poisson (ECMP) – and the special cases contained by each of them (noted with $$), namely any of the following: NB, CMP, Conway-Maxwell-binomial (CMB), COMNB, COMtNB, exponentially weighted Poisson	
3.4	(EWP), and GCMP. Distributional properties of the exponential-geometric (EG) and	93
	exponential-Poisson (EP) distributions	114
4.1 4.2	Bivariate copula functions Parameter maximum likelihood estimates (MLEs), log-likelihood (ln <i>L</i>), Akaike information criterion (AIC), difference in AIC ($\Delta_i = AIC_i - AIC_{min}$), goodness-of-fit (GOF = $\sum \frac{(O-E)^2}{E}$, where <i>O</i> and <i>E</i> denote the observed and expected cell frequencies,	143

xvi

List of Tables

	respectively) measures and associated <i>p</i> -values for various	
	bivariate distributions on the shunters accident dataset: bivariate	
	Poisson (BP); bivariate negative binomial (BNB); bivariate	
	generalized Poisson (BGP); and the BCMP obtained via the	
	trivariate reduction (BCMPtriv), compounding (BCMPcomp), or	
	either Sarmanov family (BCMPsar1 and BCMPsar2, respectively)	
	method.	145
4.3	Observed accident data among 122 shunters along with associated	
	count estimates from various bivariate distributions: bivariate	
	negative binomial (BNB), bivariate Poisson (BP), bivariate	
	generalized Poisson (BGP), bivariate geometric (BG), and	
	BCMP obtained via the compounding (BCMPcomp), trivariate	
	reduction (BCMPtriv), or either Sarmanov family (BCMPsar1 and	
	BCMPsar2) methods. Estimated counts determined from MLEs	
	for respective model parameters reported in Table 4.2.	146
4.4	Observed accident data (continued from Table 4.3) among	
	122 shunters.	148
4.5	Respective maximum likelihood estimates (MLEs), log-	
	likelihood (ln L) values, Akaike information criterion (AIC), and	
	$\Delta_i = AIC_i - AIC_{min}$ values for various bivariate models, namely	
	the bivariate Poisson distribution (BP), bivariate negative binomial	
	(BNB), bivariate generalized Poisson (BGP), and four BCMP	
	models attained via trivariate reduction (BCMPtriv), compounding	
	(BCMPcomp), and two Sarmanov family approaches (BCMPsar1	
	and BCMPsar2), respectively, on the number of Forward and	
	Center players dataset.	149
4.6	Bivariate CMP development approaches (trivariate reduction;	
	compounding; the Sarmanov families considering the CMP	
	distribution as a weighted Poisson (Sarmanov 1) or based on the	
	CMP probability generating function (Sarmanov 2), respectively;	
	and copulas) and associated qualities. For each of the considered	
	approaches, the correlation range and reported special-case	
	distributions attainable for the bivariate (Biv.) and marginal	
	(Marg.) distributions are supplied.	151
5.1	Structure of various generalized linear models.	154
5.2	Coefficient estimates and standard errors (in parentheses)	
	associated with the number of children from women over 44 years	
	of age and in their first marriage. Respective outputs likewise	
	report the associated log-likelihood and Akaike information	
	criterion (AIC) associated with each model. The glm.cmp	

	List of Tables	xvii
	(COMPoissonReg) and glm.comp (CompGLM) functions conduct CMP regression, while the glm.cmp (mpcmp) and glm.CMP (DGLMExtPois) functions conduct MCMP1 regression.NR = not reported	180
5.3	Airfreight breakage dataset, where broken denotes the number of broken jars detected following a flight that involved a number of	100
5.4	transfers, transfers (Kutner et al., 2003). Coefficient estimates and standard errors (in parentheses) associating the number of broken jars detected following a flight that involved a number of transfers. Respective outputs likewise report the associated log-likelihood and Akaike information criterion (AIC) associated with each model. The glm.cmp (COMPoissonReg) and glm.comp (CompGLM) functions conduct CMP regression, while the glm.cmp (mpcmp) and glm.CMP (DGLMExtPois) functions conduct MCMP1 regression. NA = not	182
5.5	applicable; NR = not reported. Coefficient estimates and standard errors (in parentheses) associating the number of faults in rolls of fabric with the logarithm of the corresponding roll length. Respective outputs likewise report the corresponding Akaike information criterion (AIC) for each model. CMP regression was conducted via the COMPoissonReg package, while MCMP1 regressions were performed via the mpcmp and DGLMExtPois packages, respectively. NR = not reported. Dispersion measures are reported on varying scales (with standard errors rounded to two decimal places) as provided in the respective outputs and do not allow for direct comparison.	184
5.6	Estimated coefficients and standard errors (in parentheses), negated log-likelihood, and Akaike information criterion (AIC) for various zero-inflated regressions associating the number of unwanted pursuit behavior perpetrations in the context of couple separation trajectories with the levels of education (an indicator function where 1 (0) denotes having at least bachelor's degree (otherwise)) and anxious attachment (a continuous measure) among 387 participants. Considered models are zero-inflated Poisson (ZIP), negative binomial (ZINB), CMP (ZICMP), Huang (2017) mean-parametrized COM–Poisson (ZIMCMP1), and geometric (ZIG), as well as a hurdle MCMP1 (HMCMP1) model.	
	NR = not reported.	205

xviii

List of Tables

5.7	Estimated coefficients and standard errors (in parentheses),	
	log-likelihood, Akaike information criterion (AIC), and deviance	
	for various epilepsy longitudinal data analyses associating the	
	number of seizures experienced by 59 patients in an eight-week	
	baseline period, followed by four consecutive two-week periods	
	where the patients are treated with progabide. Baseline Poisson	
	and mean-parametrized COM–Poisson (MCMP1) regressions	
	(along with their zero-inflated and hurdle analog models) are	
	considered for constructing generalized linear mixed models,	
	where, for Subject <i>i</i> , T_{ii} denotes the length (in weeks) of the time	
	period <i>i</i> , x_{ii1} is an indicator function of a period after the baseline	
	(i.e. weeks 8 through 16), x_{ii2} is an indicator function noting	
	whether or not the progabide medication is administered, and σ^2 is	
	the variance associated with the random intercept. Zero-inflation	
	and hurdle regressions are performed assuming a constant model	
	(i.e. Equation (5.48) reduces to logit(π_*) = ζ_0). The parameter ν	
	denotes the associated MCMP1 dispersion component under each	
	respective model.	209
5.8	COUNTREG output from the airfreight breakage example with CMP	
	regression.	216
5.9	COUNTREG output from the airfreight breakage example with	
	approximate COM-Poisson (ACMP) regression.	216
6.1	Centerline and Shewhart $k\sigma$ upper/lower control limits for <i>cmpc</i> -	
	and <i>cmpu</i> -charts (Sellers, 2012b).	219
7.1	R functions provided in the cmpprocess package for CMP	
	process analysis. These functions determine (approximate) MLEs	
	based on the information provided by the analyst.	254
7.2	Data (presented in sequential order, left to right) regarding the	
	number of alpha particles emitted in successive 7.5-second	
	intervals from a disk coated with polonium via the scintillation	
	method (Rutherford et al., 1910).	255
7.3	R functions to conduct statistical computing associated with	
	CMP-hidden Markov modeling. Codes available online as	
	supplementary material associated with MacDonald and Bhamani	
	(2020).	262
7.4	Univariate and multivariate thinning-based time series	
	constructions involving COM-Poisson-motivated distributions.	
	Khan and Jowaheer (2013) and Jowaheer et al. (2018) use a	
	modified CMP notation (namely $\text{CMP}(\frac{\mu}{\nu}, \nu)$) that relies on the	

List of Tables xix

approximations for the mean $\mu = \lambda^{1/\nu} - \frac{\nu-1}{2\nu}$ and variance $\sigma^2 = \frac{1}{\nu} \lambda^{1/\nu}$. Considered estimation methods are either generalized quasi-likelihood (GQL) or maximum likelihood (ML). 267 8.1 Special-case CMP cure rate models that have closed forms for $g(\lambda;\nu)$ and $\lambda = g^{-1}(1 + \exp(\mathbf{x}'\boldsymbol{\beta});\nu)$. 288 Expectation step functions for fixed ν from the CMP cure rate 8.2 model with right censoring and various associated lifetime distributions. 291 8.3 Expectation step functions for fixed v from the CMP cure rate model with right censoring and various associated lifetime distributions (continued). 292

Preface

Welcome to The Conwav-Maxwell-Poisson Distribution - the first coherent introduction to the Conway-Maxwell-Poisson distribution and its contributions with regard to statistical theory and methods. This twoparameter model not only serves as a flexible distribution containing the Poisson distribution as a special case but also, in its ability to capture either data over- or under-dispersion, it contains (in particular) two other classical distributions. The Conway-Maxwell-Poisson distribution thereby can effectively model a range of count data distributions that contain data overor under-dispersion, simply through the addition of one parameter. This distribution's flexibility offers numerous opportunities with regard to statistical methods development. To date, such efforts involve work in univariate and multivariate distributional theory, regression analysis (including spatial and/or temporal models, and cure rate models), control chart theory, and count processes. Accordingly, the statistical methods described in this reference can effectively serve in a multitude of ways, from an exploratory data analysis tool to an appropriate, flexible count data modeling impetus for a variety of statistical methods involving count data.

The Conway–Maxwell–Poisson Distribution can benefit a broad statistical audience. This book combines theoretical and applied data developments and discussions regarding the Conway–Maxwell–Poisson distribution and its significant flexibility in modeling count data, where this reference adopts the convention that the counting numbers are the natural numbers including zero, i.e. $\mathbb{N} = \{0, 1, 2, \ldots\}$. Count data modeling research is a topic of interest to the academic audience, ranging from upper-level undergraduates to graduate students and faculty in statistics (and, more broadly, data science). Meanwhile, the compelling nature of this topic and the writing format of the reference

xxi

xxii

Preface

intend to draw quantitative researchers and data analysts in applied disciplines, including business and economics, medicine and public health, engineering, psychology, and sociology – broadly anyone interested in its supporting computational discussions and examples using R. This reference seeks to assume minimal prerequisite statistics coursework/ knowledge (e.g. calculus and a calculus-based introduction to probability and statistics that includes maximum likelihood estimation) throughout the book. More advanced readers, however, will benefit from additional knowledge of other subject areas in some chapters, for example, linear algebra or Bayesian computation.

Along with this reference's discussion of flexible statistical methods for count data comes an accounting of available computation packages in R to conduct analyses. Accordingly, preliminary R knowledge will also prove handy as this reference brings to light the various packages that exist for modeling count data via the Conway–Maxwell–Poisson distribution through the relevant statistical methods. The Comprehensive R Archive Network (CRAN) regularly updates its system. In the event that any package discussed in this reference is subsequently no longer directly accessible through the CRAN, note that it is archived and thus still accessible for download and use by analysts.

Acknowledgments

This book is not only the culmination of my years of work and research developing this field but also represents the vastness of contributions in statistical methods and computation by the many authors that are cited in this reference. I am particularly thankful to Dr. Galit Shmueli, the first to introduce me to the Conway-Maxwell-Poisson distribution. That initial collaboration sparked my great interest in this topic where I could easily recognize the broad and diverse areas for potential research, some of which has since come to fruition by myself and/or others. Accordingly, I further thank my colleague and student collaborators with whom we have accomplished a great deal. Thanks as well are extended to other researchers in the larger field of count data modeling with whom I have not only established a camaraderie, but some of whom have also provided discussions and/or analysis associated with their respective models that do not provide an R package for direct computation, including Dr. N. Balakrishnan regarding various works on cure-rate models, Dr. Alan Huang regarding the mean-parametrized Conway-Maxwell-Poisson distribution and the mpcmp package, Dr. Felix Famoye regarding the bivariate generalized Poisson, Mr. Tong Li for the trivariate-reduced bivariate COM-Poisson, and Dr. S. H. Ong for both Sarmanov-formulated bivariate COM-Poisson models.

Words cannot fully describe how much I thank and appreciate Sir David Cox for his vision and encouragement for me to author this reference; I am only sorry that he was not able to see it come to fruition. I also am forever thankful and appreciative to Dr. Darcy Steeg Morris for our countless, fruitful conversations as she aided with editing the content in this reference that not only helped to shape its vision, but further ensure its accuracy, understanding, and comprehension.

xxiii

xxiv

Acknowledgments

Completing such a project does not happen in a vacuum. I thank family and friends who, through word and deed, kept me encouraged, motivated, and focused to see this project to and through the finish line. I particularly thank Dr. Kris Marsh for our many hours spent together in our self-made writing group. I am also appreciative to Georgetown University for their financial support through avenues including the Senior Faculty Research Fellowship which aided the preparation of this reference.