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While the Poisson distribution is a classical statistical model for count data, the distribu-

tional model hinges on the constraining property that its mean equals its variance. This

text instead introduces the Conway–Maxwell–Poisson distribution and motivates its use

in developing flexible statistical methods based on its distributional form.

This two-parameter model not only contains the Poisson distribution as a special

case but, in its ability to account for data over- or under-dispersion, encompasses both

the geometric and Bernoulli distributions. The resulting statistical methods serve in a

multitude of ways, from an exploratory data analysis tool to a flexible modeling impetus

for varied statistical methods involving count data.

The first comprehensive reference on the subject, this text contains numerous illus-

trative examples demonstrating R code and output. It is essential reading for academics

in statistics and data science, as well as quantitative researchers and data analysts in

economics, biostatistics and other applied disciplines.

K I M B E R L Y F. S E L L E R S is Professor in the Department of Mathematics and Statis-

tics at Georgetown University and a researcher at the U.S. Census Bureau. Her work

has contributed to count data research and software for the last 15 years. She is a Fel-

low of the American Statistical Association and an Elected Member of the International

Statistical Institute.
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Preface

Welcome to The Conway–Maxwell–Poisson Distribution – the first co-

herent introduction to the Conway–Maxwell–Poisson distribution and its

contributions with regard to statistical theory and methods. This two-

parameter model not only serves as a flexible distribution containing the

Poisson distribution as a special case but also, in its ability to capture either

data over- or under-dispersion, it contains (in particular) two other classi-

cal distributions. The Conway–Maxwell–Poisson distribution thereby can

effectively model a range of count data distributions that contain data over-

or under-dispersion, simply through the addition of one parameter. This

distribution’s flexibility offers numerous opportunities with regard to statis-

tical methods development. To date, such efforts involve work in univariate

and multivariate distributional theory, regression analysis (including spa-

tial and/or temporal models, and cure rate models), control chart theory,

and count processes. Accordingly, the statistical methods described in this

reference can effectively serve in a multitude of ways, from an exploratory

data analysis tool to an appropriate, flexible count data modeling impetus

for a variety of statistical methods involving count data.

The Conway–Maxwell–Poisson Distribution can benefit a broad

statistical audience. This book combines theoretical and applied data

developments and discussions regarding the Conway–Maxwell–Poisson

distribution and its significant flexibility in modeling count data, where

this reference adopts the convention that the counting numbers are the

natural numbers including zero, i.e. N = {0, 1, 2, . . .}. Count data mod-

eling research is a topic of interest to the academic audience, rang-

ing from upper-level undergraduates to graduate students and faculty

in statistics (and, more broadly, data science). Meanwhile, the com-

pelling nature of this topic and the writing format of the reference

xxi
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xxii Preface

intend to draw quantitative researchers and data analysts in applied dis-

ciplines, including business and economics, medicine and public health,

engineering, psychology, and sociology – broadly anyone interested in

its supporting computational discussions and examples using R. This

reference seeks to assume minimal prerequisite statistics coursework/

knowledge (e.g. calculus and a calculus-based introduction to probability

and statistics that includes maximum likelihood estimation) throughout the

book. More advanced readers, however, will benefit from additional knowl-

edge of other subject areas in some chapters, for example, linear algebra or

Bayesian computation.

Along with this reference’s discussion of flexible statistical methods

for count data comes an accounting of available computation packages

in R to conduct analyses. Accordingly, preliminary R knowledge will also

prove handy as this reference brings to light the various packages that ex-

ist for modeling count data via the Conway–Maxwell–Poisson distribution

through the relevant statistical methods. The Comprehensive R Archive

Network (CRAN) regularly updates its system. In the event that any pack-

age discussed in this reference is subsequently no longer directly accessible

through the CRAN, note that it is archived and thus still accessible for

download and use by analysts.
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