Contents

Preface xiii

Part I Fundamentals of Ambient Backscatter Communication 1

1 Self-Sustaining Wireless Communication Networks 3
 1.1 Introduction 3
 1.2 Traditional Energy Harvesting Networks 5
 1.2.1 Wireless Power Transfer 5
 1.2.2 Wireless-Powered Communication Networks 9
 1.2.3 Simultaneous Wireless Information and Power Transfer (SWIPT) 12
 1.3 Ambient Backscatter Communication Networks 18
 1.3.1 Backscatter Communication Systems 18
 1.3.2 Overview of Ambient Backscatter Communication Systems 20
 1.3.3 Potential Applications and Implementation of Ambient Backscatter Communication Networks 23
 1.4 Summary 24

2 Fundamentals of Ambient Backscatter Communication 33
 2.1 Introduction 33
 2.2 Fundamentals of Modulated Backscatter 34
 2.3 Channel Coding and Decoding 36
 2.4 Modulation and Demodulation 41
 2.5 Backscatter Communication Channels 46
 2.5.1 General Models of Backscatter Communication Channels 46
 2.5.2 Link Budgets for Backscatter Channels 48
 2.5.3 Theoretical Analyses and Experimental Measurements 51
 2.6 Research Challenges 53
 2.7 Summary 54

3 Circuit and Antenna Designs for Ambient Backscatter 62
 3.1 Introduction 62
 3.2 Circuit Design 64
 3.3 Antenna Design 68
Contents

3.3.1 Operating Frequency 68
3.3.2 Impedance Matching 71
3.3.3 Antenna Gain 72
3.3.4 Polarization Mismatch 72

3.4 Ambient Backscatter Transmitter Design 73
3.4.1 Modulator 74
3.4.2 Energy Harvester 76
3.4.3 Micro-Controller 78
3.4.4 Circuit and Antenna Designs for Ambient Backscatter Transmitters 82

3.5 Ambient Backscatter Receiver Design 86
3.5.1 Interference Canceler 87
3.5.2 Diversity Combiner 90
3.5.3 Maximum Likelihood Detector 91

3.6 Summary 93

Part II Architectures, Protocols, and Performance Analysis 97

4 Wireless-Powered Communication Networks with Ambient Backscatter 99
4.1 Wireless-Powered Communication Networks 99
4.1.1 Wireless Energy Harvesting Technology 99
4.1.2 Architecture of an RF Energy Harvesting Device 100
4.1.3 Basic Models of WPCNs 101
4.2 The Integration of Ambient Backscatter Technology to WPCNs 103
4.2.1 Wireless Hybrid Transmitter Devices 103
4.2.2 Wireless Hybrid Receiver Devices 104
4.2.3 Advantages of the Integration of Ambient Backscatter Communication to WPCNs 104
4.3 WPCNs with Ambient Backscatter: Performance Analysis 105
4.3.1 Network Model 105
4.3.2 Geometric Modeling 109
4.3.3 Performance Evaluation 111
4.3.4 Analytical Results 112
4.3.5 Performance Evaluation and Analysis 115
4.4 Summary and Future Work 122

5 Cognitive Radio Networks with Ambient Backscatter Communication 125
5.1 Fundamental Background 125
5.1.1 Cognitive Radio 125
5.1.2 RF-Powered Cognitive Radio Networks 128
5.2 RF-Powered Cognitive Radio Networks with Ambient Backscatter Communication 130
5.2.1 Circuit Diagram to Integrate Ambient Backscatter Communication 131
6 Ambient Backscatter Relay Communication

6.1 Introduction 157

6.2 Relay Communication with RF Energy Harvesting 158
6.2.1 Time-Switching and Power-Splitting Protocols for Energy Harvesting Relay 158
6.2.2 Single Relay-Assisted Communication 159
6.2.3 Relay Selection from Multiple Energy Harvesting Relays 161
6.2.4 Cooperative Beamforming of Multiple Energy Harvesting Relays 162

6.3 Backscatter-Aided Communication with Energy Harvesting 164
6.3.1 Wireless-Powered Hybrid Radio Networks 164
6.3.2 A Literature Review 169
6.3.3 Passive Relaying Game 171
6.3.4 Performance Comparison 176

6.4 Two-Hop Backscatter Relay Communication 176
6.4.1 Dual-Mode Transmission Capability 178
6.4.2 Problem Formulation and Solutions 180
6.4.3 Numerical Evaluation 185

6.5 Summary and Future Work 187

7 Performance Analysis of Ambient Backscatter

7.1 Introduction 193

7.2 Signal Detection of Ambient Backscatter 194
7.2.1 Maximum Likelihood Detection 196
7.2.2 Covariance-Based Detection 200
7.2.3 Multi-Level Signal Detection 201
7.2.4 Performance with Random RF Emitters 203
7.2.5 Capacity and Outage Performance 204

7.3 Multi-Antenna Detection for Ambient Backscatter 205
7.3.1 Multiple Antennas at the Receiver 206
7.3.2 Ratio Detector and Antenna Selection 208
7.3.3 Multiple Antennas at the Transmitter 209

7.4 Performance Analysis with Multiple Backscatter Transmitters 211
7.4.1 Backscatter Transmission Scheduling 211
7.4.2 Two-Way Backscatter Relay Communication 213
7.4.3 Multiple-Access Backscatter Communication 213

7.5 Summary and Future Work 214
Part III Challenges, Approaches, and Emerging Topics

8 Performance Improvement for Ambient Backscatter Communication Systems

8.1 Introduction

8.2 Multiple-Access Schemes

8.3 Communication Range and Data Rate

8.3.1 Backscatter Design

8.3.2 Coding and Modulation Techniques

8.3.3 Energy Harvesting and Backscatter Scheduling

8.3.4 Full-Duplex Technique

8.3.5 Signal Detection and Interference Cancellation

8.4 Reliability and Robustness

8.5 Challenges and Future Research Directions

8.6 Summary

9 Power Management

9.1 Power Management in Backscatter Communication

9.1.1 Power Management in Bistatic Backscatter Devices

9.1.2 Power Management in Ambient Backscatter Devices

9.2 Circuit Designs

9.3 Hybrid Backscatter Communication in Wireless-Powered Hybrid Networks

9.3.1 System Model

9.3.2 Transmission Rate of Backscatter Communication

9.3.3 Macro-Zone Analysis

9.3.4 Outdoor Wi-Fi-Zone Analysis

9.3.5 Performance Analysis

9.4 Backscatter-Based Cooperative Communication

9.4.1 Protocol Description

9.5 Challenges and Future Research Directions

10 Open Issues and Emerging Research Topics

10.1 Open Issues

10.1.1 Interference Management

10.1.2 Security Issues

10.1.3 Standardization and Regulation

10.1.4 Integration of ABCSs into Existing Wireless and Mobile Networks

10.2 Emerging Research Topics

10.2.1 Full-Duplex-Based Ambient Backscatter

10.2.2 Ultra-Wideband Backscatter Communication
Table of Contents

10.2.3 Millimeter-Wave-Based Ambient Backscatter 286
10.2.4 Visible-Light Backscatter Communication 287
10.2.5 AI for Future Ambient Backscatter Communication 290
10.3 Conclusion 292

Index 295