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1 Introduction

1.1 What is Statistical Mechanics?

We perceive the world at a macroscopic level, dealing with substances composed of atoms,

yet wholly ignorant of the state of those individual atoms. As physicists, there are many

situations in which we may wish to describe the macroscopic behaviour of some physical

system, even though we do not have full knowledge of the state of all of the microscopic

degrees of freedom of that system. For instance, suppose we want to know the physical

properties of a container of some gas, whose atoms barely interact with each other, such

as argon. The most brute-force approach to trying to understand the physical properties of

the gas would be to take the Schrödinger equation for the ∼ 1023 atoms in the container,

and try to solve it to find the eigenvalues and eigenstates of any observable that we might

be interested in. Even if we were able to do this (which we aren’t), we would still need

to know the initial state of the gas in order to be able to determine the state of the gas at

any particular time. Moreover, the subsequent dynamics will be chaotic, so that we can

never know the initial conditions with sufficient precision to be able to calculate the state

of the gas at arbitrary times. Clearly, such an approach is impractical, even with the fastest

computers currently available (or likely to be available in the future).

One of the triumphs of eighteenth- and nineteenth-century physics was the development

of thermodynamics, which allowed the description of the physical properties of a system

such as a container of gas to be reduced to a single equation of state, the ideal

gas law

PV = N kBT , (1.1)

which relates thermodynamic quantities pressure P, volume V and temperature T without

any reference to the microscopic details of the gas.

However, thermodynamics does not explain why, even though the ideal gas law

does a good job of describing dilute gases of both argon and oxygen (or any other

simple gas), argon has a heat capacity CV =
3
2

kB, whilst oxygen has a heat capacity

CV =
5
2

kB. The distinction between these two heat capacities depends on the microscopic

degrees of freedom that are available to atoms or molecules in each gas. As diatomic

molecules, oxygen molecules have extra degrees of freedom than argon atoms, which

leads to more possible ways for energy to be deposited in such a gas. For instance,

oxygen molecules can have rotational kinetic energy in addition to the translational kinetic

energy that argon atoms can have. Statistical mechanics is a framework to calculate such

macroscopic properties, from a knowledge of microscopic details of a system. Researchers
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2 1 Introduction

such as Maxwell, Boltzmann and Gibbs developed these ideas in a classical context, but

they have proven to be equally applicable to quantum systems.

While we study a number of problems in this book that can be solved exactly, most

problems in statistical physics cannot be solved explicitly. Nevertheless, the concepts that

we develop here can be applied either in numerical contexts, such as molecular dynamics or

Monte Carlo simulations, or in approximate analytic approaches. Statistical mechanics also

allows us to understand why we can describe the properties of a complex system with many

different possible arrangements of its microscopic constituents, for example ∼ 1023 atoms,

in terms of just a few quantities, such as temperature, pressure and chemical potential,

and why thermal equilibrium exists. As such, it provides a microscopic foundation to the

thermodynamic concepts used in physics and other fields such as chemistry, engineering

and biology.

An important part of thermodynamics is the concept of entropy, which is often described

in somewhat unsatisfying terms as “the amount of disorder in a system” or some similar

phrase. In the context of statistical mechanics, entropy can be given a precise meaning,

as a measure of our ignorance about a system. Such a view is in accord with the idea

that we describe the statistical properties of a system rather than trying to solve the

equations of motion for its constituents (e.g. Newton’s laws or the Schrödinger equation).

More broadly, the idea of entropy also plays an important role in information theory. In

Chapter 2 we will see how entropy is related to irreversibility, as embodied in the second

law of thermodynamics, even though the relevant equations of motion are invariant under

time reversal.

Examples of systems and situations that we will encounter and/or can be described in a

statistical mechanical framework include: ideal gases, spins in magnetic materials, photons

in the Sun, white dwarf stars, molecular motors, DNA, Bose–Einstein condensation,

impurities in crystals, polymer folding, stock market fluctuations, electrical noise in

circuits, magnetic domains, superfluidity and phase transitions.

1.2 Probabilistic Behaviour

Having established that it is futile to try to follow the trajectories of every single molecule

in a gas or to solve the corresponding equations of motion for the particles, we turn to a

statistical description that will allow us to obtain the collective behaviour of the system

without knowing what any individual particle is doing. This is in accord with how we

describe physical systems – we generally are interested in macroscopic properties, such as

pressure or temperature in a gas, that arise from the average over the motion of individual

molecules. We know that certain configurations of the molecules are very unlikely, e.g.

all the molecules being found in one corner of a container. To quantify this intuitive

understanding we will assign probabilities to different configurations. Averages over these

probabilities will give us the average values of physical quantities, which we will be able to

relate to likely outcomes of macroscopic measurements when the number of constituents

of a system becomes large. To give such a description, we need to start with a careful

discussion of probabilities and probability distributions.
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3 1.2 Probabilistic Behaviour

There are a number of different ways to think about probability. An empirical approach

is the frequentist point of view: if we do N trials of an experiment and measure X for

some quantity in NX of those trials, then the frequentist view is that the probability of

measuring X is

P(X ) = lim
N→∞

NX

N
. (1.2)

A problem with this approach is that N → ∞ is an unattainable limit, it is impossible to

make an infinite number of measurements – it also ties a probability to an actual sequence

of events. Another way to think about probability is via a propensity approach, in which

the probability is viewed as intrinsic to a particular physical situation and is then reflected

in subsequent measurements. In this view, P(X ) exists for the physical situation we are

considering and then if we make a sequence of measurements, those measurements will be

determined by P(X ). A third approach is the Bayesian point of view, where the probabil-

ities assigned to different possible outcomes, e.g. X or Y , depend on prior knowledge. We

will tend to take a propensity approach to probabilities, but from a mathematical point of

view, provided a probability satisfies the axioms, then it is acceptable.

1.2.1 Axioms of Probability

We introduce P(A) as the probability that some outcome A occurs given some initial

conditions, e.g. this could be the probability that a fair coin comes up heads when tossed.

In order to be a probability, P(A) must satisfy the following four axioms, which express

basic properties that we require of any reasonable probability:

(1) P(A) ≥ 0 – this guarantees there are no negative probabilities.

(2)
∑

i P(Ai) = 1 – this expresses the idea that if we consider all possible outcomes Ai

for the given initial conditions then one of these must happen and so the sum of all the

probabilities is 1.

(3) The probability when combining independent outcomes for the same event is additive

(e.g. this could be the probability of rolling either a 1 or a 4 on a die, in which case

the probability is equal to the sum of the probability of rolling 1 with the probability

of rolling 4). Hence for independent outcomes A and B

P(A ∨ B) = P(A) + P(B), (1.3)

where ∨ is logical or, or equivalently

P(A) = 1 − P( Ā), (1.4)

where Ā is logical not A. This is also equivalent to

P(A) + P( Ā) = 1, (1.5)

which reflects that it is certain that we get one of the outcomes A or Ā.

(4) The probability of independent events is multiplicative (e.g. we might want to know

the probability that we get a head when we flip a coin and a 6 when we roll a die):

P(A ∧ B) = P(A)P(B), (1.6)

where ∧ is logical and.
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4 1 Introduction

1.2.2 Example: Coin Toss Experiment

A simple example which illustrates the ideas expressed in the axioms in a concrete way,

and which also introduces the binomial distribution, is a coin toss experiment. We can flip

a coin many times and we will get some sequence of heads and tails, e.g.

HTTHHHTHTTTTTHTHTHTHTHHTHTTHTHTHTHTHTHTTTHHTH . . .

We can’t predict the outcome of any one coin toss, but for a fair coin, the odds of having a

head or a tail when we toss the coin are p = 1
2

and q = 1
2
, respectively.

For N tosses of the coin, we can determine the probability of there being NH heads and

NT tails by drawing a tree diagram as illustrated in Fig. 1.1 and counting possibilities, for

instance, or more systematically by using the binomial theorem:

1 = (p + q)N = pN
+ N pN−1q +

1

2
N (N − 1)pN−2q2

+ · · · + qN

=

N
∑

M=0

(

N

M

)

pN−MqM

=

N
∑

M=0

P(N , N − M), (1.7)

where
(

N

M

)

=

N!

M! (N − M)!
, (1.8)

and P(N , N − M) is the probability of having N − M heads and M tails. If we label the

number of heads as NH and the number of tails as NT , then the probability of having NH

heads and NT tails after a total of N = NH + NT coin tosses will be given by

P(N , N − M) = P(N , NH ) =

(

N

M

)

pN−MqM
=

N!

NH ! NT !
pNH qNT . (1.9)

p2q

p2q

pq2

pq2
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Fig. 1.1 Probability tree diagram for three coin tosses. The probability of obtaining a head (H) on any coin toss is p and the

probability of obtaining a tail (T) is q.
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5 1.2 Probabilistic Behaviour

Now, suppose we pick N = 100, then our general expectation based on experience is that

∆N = NH − NT should not be too large (i.e. much less than 100). We can be quantitative

and we see that the probability that we get ∆N = ±100 is p100
= 1/2100 ≃ 8 × 10−31. In

contrast, we might guess that it is quite likely that we will get ∆N = 0, which is given by

the probability of 50 heads:

P(100, 50) =

(

100

50

)

1

2100
≃ 8.0%. (1.10)

However, this is not very different from the probability of ∆N = ±2, corresponding to 49

or 51 heads:

P(100, 51) = P(100, 49) =

(

100

49

)

1

2100
≃ 7.8%, (1.11)

but considerably more than ∆N = ± 20, which corresponds to 40 or 60 heads:

P(100, 40) = P(100, 60) =

(

100

40

)

1

2100
≃ 1.1%. (1.12)

If we were to perform N = 10 coin flips, for instance, then looking at ∆N as we have done

here would not be very useful to compare with what we find when N = 100. A quantity

that is more useful is

∆N

N
=

NH − NT

N
,

which gives us the relative deviation from the behaviour expected of a fair coin (i.e. NH =

NT ). We might expect that the probability that this quantity is close to zero gets larger as

N increases. For instance, when N = 100, the probability that −0.1 ≤ ∆N /N < 0.1 is

≃ 73%, whereas for N = 1000, the probability is ≃ 99.9%.

1.2.3 Probability Distributions

The coin toss example suggests that rather than focusing on individual outcomes of events,

which are random, we should look at quantities that are robust properties of the system,

such as average values or the distribution of allowed values – we may not know the

exact result of any particular event, but would like to know the range of highly probable

outcomes.

The objects that will be central to this discussion are probability distributions. A

probability distribution P(X ) for some quantity X gives the probability of the different

allowed values of X . It can be either discrete, in which case it will take the form p(xi),

which measures the probability that X takes the value xi , or continuous, in which case we

can write the probability as p(x)dx, which corresponds to the probability that X takes a

value between x and x + dx. In this second case, p(x) is a probability density, as illustrated

in Fig. 1.2.

Given a probability distribution p(xi), we can calculate the mean value of some function

f of X by weighting the values of f by the probability distribution:

〈 f (x)〉 = f (x) =
∑

i

f (xi) p(xi). (1.13)
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6 1 Introduction

(a)
xi

p(xi)

(b) x

p(x)

Fig. 1.2 Examples of (a) a discrete and (b) a continuous probability distribution.

For a continuous probability distribution we should replace the sum with an integral:

〈 f (x)〉 =

∫

dx f (x) p(x). (1.14)

In the following, results written with summations should be understood as applying to

both discrete and continuous probability distributions. We will be particularly interested

in moments of probability distributions as these will allow us to characterize the shape of

unknown probability distributions. For instance, for the mth moment:

〈xm〉 = xm
=

∑

i

xm
i p(xi). (1.15)

The main moments of distributions that we will be concerned with are:

(i) the zeroth moment

〈

x0
〉

=

∑

i

p(xi) = 1 (1.16)

(as we would expect for a probability);
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7 1.2 Probabilistic Behaviour

(ii) the first moment (the mean)

〈x〉 = x̄ =
∑

i

xi p(xi), (1.17)

and;

(iii) the second moment
〈

x2
〉

=

∑

i

x2
i p(xi). (1.18)

With knowledge of these quantities we can also determine the central moments of a

distribution, i.e. the moments with respect to the mean. Define

∆x = x − 〈x〉 ,

then we can see immediately that

〈∆x〉 = 〈x − 〈x〉〉

=

∑

i

xi p(xi) −
∑

i

〈x〉 p(xi)

= 〈x〉 − 〈x〉 1

= 0, (1.19)

and that the variance is
〈

(∆x)2
〉

=

〈

(x − 〈x〉)2
〉

=

〈

x2
〉

− 2 〈x 〈x〉〉 + 〈x〉2

=

〈

x2
〉

− 2 〈x〉2 + 〈x〉2

=

〈

x2
〉

− 〈x〉2 , (1.20)

which is closely related to the standard deviation

σ =

√

〈

(∆x)2
〉

=

√

〈

x2
〉

− 〈x〉2. (1.21)

We note in passing that the third and fourth central moments give the skew and

the kurtosis, respectively, which can be used to characterize the shape of a probability

distribution. These are important quantities in the theory of probability distributions but

we will not use them in our discussion of statistical physics.

1.2.4 Example: RandomWalk

Random walks describe many processes that can take place in nature. A very short list of

examples includes the folding of polymers, Brownian motion of small particles, photons

diffusing in the Sun, electrons diffusing in a wire, molecular motors, chemotaxis, genetic

drift and stock prices. A schematic example of a random walk in two dimensions is

illustrated in Fig. 1.3.

We will initially consider the simplest version of a random walk. Imagine a walker

placed on a one-dimensional line. The walker takes steps of equal length randomly either

to the left or right. Without knowing the exact sequence of steps that the walker takes, we
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8 1 Introduction

0

Fig. 1.3 A randomwalk in two dimensions with ixed step length but random direction for each step starting from the

origin O.
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Fig. 1.4 Three randomwalks in one dimension, each with 100 000 steps.

cannot determine exactly where they will end up (see Fig. 1.4). However, we can say very

precisely what the probabilities for finding the walker at any position along the line are

after the walker has taken N steps. Note that we could regard our coin-flipping example as

a random walk, with heads corresponding to a move to the right and tails to a move to the

left, so we are also obtaining the probability distribution for coin flips.

To simplify the problem, suppose the walker starts at the origin, and takes steps of length

a. After they have taken N steps, NL will have been to the left and NR will have been to

the right, and let us call their position on the line Ra. Then

www.cambridge.org/9781108480789
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9 1.2 Probabilistic Behaviour

N = NR + NL , (1.22)

R = NR − NL , (1.23)

and so

NR =
1

2
(N + R) , (1.24)

NL =
1

2
(N − R) . (1.25)

There are two possibilities at each step, a move to the right with probability p and a move

to the left with probability q. In this sense the problem is just like the coin flip problem,

with NR equivalent to NH and NL equivalent to NT . Hence, for a walk with displacement

from the origin of Ra, we can determine from the binomial theorem that the probability of

any path with N steps of which NR are to the right and NL are to the left is

P(N , R) =
N!

NR! NL!
pNR qNL

=

N![
1
2

(N + R)
]

!
[

1
2

(N − R)
]

!
p[ 1

2
(N+R)]q[ 1

2
(N−R)].

(1.26)

The probability of each individual path is pNR qNL (where the combinatorial factor

N! /NR! NL! takes care of the fact that there are multiple paths that end up at the same

endpoint).

If we want to calculate the mean displacement for a walk with N steps, then we can do

so as follows (recalling that NR − NL = NR − [N − NR]):

〈R〉 =

N
∑

R=−N

R P(N , R)

=

N
∑

NR=0

(NR − NL )
N!

NR! (N − NR)!
pNR q(N−NR )

= p
∂

∂p

⎡⎢⎢⎢⎢⎢⎣

N
∑

NR=0

N!

NR! (N − NR)!
pNR q(N−NR )

⎤⎥⎥⎥⎥⎥⎦








p+q=1

− q
∂

∂q

⎡⎢⎢⎢⎢⎢⎣

N
∑

NR=0

N!

NR! (N − NR)!
pNR q(N−NR )

⎤⎥⎥⎥⎥⎥⎦








p+q=1

= p
∂

∂p
(p + q)N






p+q=1

− q
∂

∂q
(p + q)N






p+q=1

= N p (p + q)N−1


p+q=1
− Nq (p + q)N−1


p+q=1

= N (p − q). (1.27)

The trick we used in order to evaluate this sum was to write the sum in terms of derivatives

of the binomial expansion

(p + q)N =

N
∑

M=0

(

N

M

)

pN−MqM , (1.28)
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10 1 Introduction

where we note that p and q are continuous variables, and wait until the end of the

calculation to set p + q = 1. If p = q then we can see that 〈R〉 = 0. We should expect

this on general grounds without doing any calculations, because there is no asymmetry

between right and left. This is because for any path that leads to a positive displacement,

there will be an equally probable path that leads to the same negative displacement and the

average of these displacements will be zero.

An alternative physically motivated argument that reaches the same value for 〈R〉 is that

if the probability of a step to the right is p, then after N steps we should expect that the

number of steps to the right will be 〈NR〉 = pN . Similiarly, we should expect that the

number of steps to the left will be 〈NL〉 = qN . Given these two estimates we would expect

that 〈R〉 = 〈NR〉−〈NL〉 = (p−q)N , which is exactly what we found in a more complicated

calculation in deriving Eq. (1.27).

We can use a similar approach to the one we used in Eq. (1.27) to calculate the mean

square displacement:

〈

R2
〉

=

N
∑

R=−N

R2P(N , R)

=

N
∑

NR=0

(NR − NL )2 N!

NR! (N − NR)!
pNR q(N−NR )

=

(

p
∂

∂p

)2 ⎡⎢⎢⎢⎢⎢⎣

N
∑

NR=0

N!

NR! (N − NR)!
pNR q(N−NR )

⎤⎥⎥⎥⎥⎥⎦








p+q=1

− 2pq
∂

2

∂p∂q

⎡⎢⎢⎢⎢⎢⎣

N
∑

NR=0

N!

NR! (N − NR)!
pNR q(N−NR )

⎤⎥⎥⎥⎥⎥⎦








p+q=1

+

(

q
∂

∂q

)2 ⎡⎢⎢⎢⎢⎢⎣

N
∑

NR=0

N!

NR! (N − NR)!
pNR q(N−NR )

⎤⎥⎥⎥⎥⎥⎦








p+q=1

=

⎧⎪⎨⎪⎩

(

p
∂

∂p

)2

(p + q)N − 2pq
∂

2

∂p∂q
(p + q)N +

(

q
∂

∂q

)2

(p + q)N
⎫⎪⎬⎪⎭







p+q=1

=

{

p
∂

∂p
pN (p + q)N−1 − 2pqN (N − 1)(p + q)N−2

+ q
∂

∂q
qN (p + q)N−1

}




p+q=1

=

[
N p(p + q)N−1

+ p2 N (N − 1)(p + q)N−2 − 2pqN (N − 1)(p + q)N−2

+Nq(p + q)N−1
+ q2 N (N − 1)(p + q)N−2

] 


p+q=1

= (p − q)2 N (N − 1) + N

= N (p + q)2
+ (p − q)2 N (N − 1)

= N2(p − q)2
+ 4N pq

= 〈R〉2 + 4N pq. (1.29)
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