Auction Theory for Computer Networks

Do you have the tools to address recent challenges and problems in modern computer networks? Discover a unified view of auction theoretic applications and develop auction models, solution concepts, and algorithms with this multidisciplinary review. Devise distributed, dynamic, and adaptive algorithms for ensuring robust network operation over time-varying and heterogeneous environments, and for optimizing decisions about services, resource allocation, and usage of all network entities. Topics including cloud networking models, MIMO, mmWave communications, 5G networks, data aggregation, task allocation, user association, interference management, wireless caching, mobile data offloading, and security. Introducing fundamental concepts from an engineering perspective and describing a wide range of state-of-the-art techniques, this text is an excellent resource for graduate and senior undergraduate students, network and software engineers, economists, and researchers.

Dusit Niyato is a professor in the School of Computer Science and Engineering at Nanyang Technological University, Singapore, and a Fellow of the IEEE.

Nguyen Cong Luong is a senior lecturer in Faculty of Information Technology at PHENIKAA University, Hanoi, Vietnam. He is also a researcher in PHENIKAA Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC, Hanoi, Vietnam.

Ping Wang is an associate professor in the Department of Electrical Engineering and Computer Science, York University.

Zhu Han is a John and Rebecca Moores Professor in both the Department of Electrical and Computer Engineering and the Computer Science Department at the University of Houston, and a Fellow of the IEEE and the AAAS.
Auction Theory for Computer Networks

DUSIT NIYATO
Nanyang Technological University

NGUYEN CONG LUONG
PHENIKAA University

PING WANG
York University

ZHU HAN
University of Houston
To
our families
Contents

1 Introduction
 1.1 A Brief Overview of the History of Auctions 1
 1.2 Auction Theory in Computer Networks 2
 1.3 Organization and Timeliness of This Book 3
 1.3.1 Organization 3
 1.3.2 Timeliness of the Book 7
 1.4 Acknowledgments 10

2 Overview of Modern Computer Networks 11
 2.1 Internet of Things 11
 2.1.1 Definitions 11
 2.1.2 IoT Architecture 12
 2.1.3 Resources and Services of IoT 14
 2.1.4 Wireless Sensor Network 15
 2.1.5 Mobile Crowdsensing Network 16
 2.2 Cloud Networking 18
 2.2.1 General Architecture 18
 2.2.2 Cloud Data Center Networking 20
 2.2.3 Mobile Cloud Networking 21
 2.2.4 Edge Computing 22
 2.2.5 Cloud-Based Video-on-Demand System 24
 2.3 5G Wireless Networks 25
 2.3.1 Massive Multiple-Input and Multiple-Output 26
 2.3.2 Heterogeneous Networks 27
 2.3.3 Millimeter Wave Communications 29
 2.3.4 Cognitive Radio 30
 2.3.5 Device-to-Device Communications 31
 2.3.6 Machine-to-Machine Communications 33
 2.4 Data Collection and Resource Management 34
 2.4.1 Data Aggregation 34
 2.4.2 Task Allocation 35
 2.4.3 User Association 37
 2.4.4 Interference Management 38
Contents

2.4.5 Wireless Caching 40
2.4.6 Mobile Data Offloading 42
2.5 Wireless Network Security 43
 2.5.1 Users and Attackers in Wireless Networks 44
 2.5.2 Eavesdropping Attack 44
 2.5.3 Denial-of-Service Attack 47
 2.5.4 Information Security Issues 49
 2.5.5 Illegitimate Behaviors in Wireless Networks 50
2.6 Summary 51

3 Mechanism Design and Auction Theory in Computer Networks 52

3.1 Mechanism Design 52
 3.1.1 Mechanism 52
 3.1.2 Mechanism Design 53
 3.1.3 Revelation Principle 55
 3.1.4 Incentive Compatibility 57
 3.1.5 Individual Rationality 58
 3.1.6 Economic Efficiency and Budget Balance 59
3.2 Optimal Mechanisms 60
 3.2.1 Social Surplus and Profit 60
 3.2.2 Social Surplus Maximization Problem 61
 3.2.3 Profit Maximization Problem 63
3.3 Auction Theory in Computer Networks 64
 3.3.1 Auction Basics 65
 3.3.2 Auction Theory for Computer Networks 68
 3.3.3 Basic Terminology in Auction Theory 69
3.4 Summary 71

4 Open-Cry Auction 72

4.1 English Auction 72
 4.1.1 English Auction Process 72
 4.1.2 Equilibrium Strategies 74
4.2 Development of English Auction for Computer Networks 78
 4.2.1 System Model and Problem Formulation 79
 4.2.2 Walrasian Equilibrium 81
 4.2.3 English Auction for Walrasian Equilibrium 82
4.3 Dutch Auction 83
 4.3.1 Dutch Auction Process 83
 4.3.2 Revenue Equivalence Theorem 85
 4.3.3 Equilibrium in Dutch Auction 86
4.4 Development of Dutch Auction for Computer Networks 87
 4.4.1 Prevention of Black Hole Attacks in Mobile Ad Hoc Networks 87
 4.4.2 Relay Selection in the Internet of Things 91
 4.4.3 Channel Allocation in 5G Heterogeneous Networks 93
<table>
<thead>
<tr>
<th>Contents</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5 English–Dutch Auction</td>
<td>97</td>
</tr>
<tr>
<td>4.6 Summary</td>
<td>99</td>
</tr>
<tr>
<td>5 First-Price Sealed-Bid Auction</td>
<td>100</td>
</tr>
<tr>
<td>5.1 Definition</td>
<td>100</td>
</tr>
<tr>
<td>5.2 Equilibrium</td>
<td>101</td>
</tr>
<tr>
<td>5.2.1 Strategic Analysis</td>
<td>101</td>
</tr>
<tr>
<td>5.2.2 Bayesian–Nash Equilibrium</td>
<td>102</td>
</tr>
<tr>
<td>5.3 First-Price Sealed-Bid Reverse Auction</td>
<td>104</td>
</tr>
<tr>
<td>5.4 Development of First-Price Sealed-Bid Auction for Computer Networks</td>
<td>105</td>
</tr>
<tr>
<td>5.4.1 Incentive Mechanism for Data Aggregation</td>
<td>105</td>
</tr>
<tr>
<td>5.4.2 Market-Based Adaptive Task Allocation</td>
<td>109</td>
</tr>
<tr>
<td>5.4.3 Market-Based Relay Selection</td>
<td>112</td>
</tr>
<tr>
<td>5.4.4 Denial-of-Service Attack Prevention</td>
<td>114</td>
</tr>
<tr>
<td>5.5 Summary</td>
<td>117</td>
</tr>
<tr>
<td>6 Second-Price Sealed-Bid Auction</td>
<td>119</td>
</tr>
<tr>
<td>6.1 Second-Price Sealed-Bid Auction</td>
<td>119</td>
</tr>
<tr>
<td>6.1.1 Definition</td>
<td>119</td>
</tr>
<tr>
<td>6.1.2 Dominant Strategy and Nash Equilibrium</td>
<td>121</td>
</tr>
<tr>
<td>6.1.3 Second-Price Sealed-Bid Reverse Auction</td>
<td>123</td>
</tr>
<tr>
<td>6.1.4 Development of Second-Price Sealed-Bid Auction for Computer Networks</td>
<td>124</td>
</tr>
<tr>
<td>6.2 Vickrey–Clarke–Groves Auction</td>
<td>135</td>
</tr>
<tr>
<td>6.2.1 Definition</td>
<td>135</td>
</tr>
<tr>
<td>6.2.2 Description</td>
<td>136</td>
</tr>
<tr>
<td>6.2.3 Dominant Strategy</td>
<td>139</td>
</tr>
<tr>
<td>6.2.4 Examples</td>
<td>140</td>
</tr>
<tr>
<td>6.2.5 Virtues</td>
<td>141</td>
</tr>
<tr>
<td>6.2.6 Development of VCG Auction for Computer Networks</td>
<td>142</td>
</tr>
<tr>
<td>6.3 Summary</td>
<td>157</td>
</tr>
<tr>
<td>7 Combinatorial Auction</td>
<td>158</td>
</tr>
<tr>
<td>7.1 Introduction</td>
<td>158</td>
</tr>
<tr>
<td>7.2 Substitutable and Complementary Items</td>
<td>159</td>
</tr>
<tr>
<td>7.3 Single-Round Combinatorial Auction</td>
<td>161</td>
</tr>
<tr>
<td>7.3.1 Bidding Language</td>
<td>161</td>
</tr>
<tr>
<td>7.3.2 Winner Determination Problem</td>
<td>163</td>
</tr>
<tr>
<td>7.4 Iterative Combinatorial Auctions</td>
<td>165</td>
</tr>
<tr>
<td>7.4.1 Ascending Proxy Auction</td>
<td>165</td>
</tr>
<tr>
<td>7.4.2 Clock-Proxy Auction</td>
<td>167</td>
</tr>
<tr>
<td>7.5 Development of the Combinatorial Auction for Computer Networks</td>
<td>170</td>
</tr>
<tr>
<td>7.5.1 Spectrum Allocation in Cognitive Radio</td>
<td>170</td>
</tr>
<tr>
<td>7.5.2 Virtualization of 5G Massive MIMO</td>
<td>174</td>
</tr>
</tbody>
</table>
Contents

7.5.3 Mobile Data Offloading in 5G HetNets 180
7.5.4 Resource Allocation in D2D Communication Underlying Cellular Networks 184
7.6 Summary 188

8 Double-Sided Auction 189
8.1 Introduction 189
8.2 Single-Round Double Auction 189
8.2.1 Uniform Pricing Policy 192
8.2.2 Discriminatory Pricing Policy 193
8.3 Continuous Double Auction 194
8.4 Development of Double Auction for Computer Networks 196
8.4.1 Sensing Task Allocation in Participatory Sensing 197
8.4.2 Location Privacy in Participatory Sensing 201
8.4.3 Spectrum Allocation in Heterogeneous Networks 204
8.4.4 Cloud Resource Allocation in Edge Computing 209
8.5 Summary 214

9 Other Auctions 215
9.1 Ascending Clock Auction 216
9.1.1 Auction Process 216
9.1.2 Application of Ascending Clock Auction for Physical Layer Security 217
9.2 Share Auction 221
9.3 Online Auction 224
9.3.1 Basic Terminologies 224
9.3.2 Development of Online Auction for Cloud Resource Pooling 226
9.4 Waiting-Line Auction 231
9.5 Summary 235

10 Optimal Auction Using Machine Learning 236
10.1 Optimal Auction 236
10.2 Machine Learning 238
10.3 Machine Learning for Optimal Auction 239
10.3.1 Design 239
10.3.2 Example 244
10.4 Machine Learning for Myerson Auction 249
10.4.1 Design 250
10.4.2 Example 254
10.5 Summary 259

References 260
Index 278