

Auction Theory for Computer Networks

Do you have the tools to address recent challenges and problems in modern computer networks? Discover a unified view of auction theoretic applications and develop auction models, solution concepts, and algorithms with this multidisciplinary review. Devise distributed, dynamic, and adaptive algorithms for ensuring robust network operation over time-varying and heterogeneous environments, and for optimizing decisions about services, resource allocation, and usage of all network entities. Topics including cloud networking models, MIMO, mmWave communications, 5G networks, data aggregation, task allocation, user association, interference management, wireless caching, mobile data offloading, and security. Introducing fundamental concepts from an engineering perspective and describing a wide range of state-of-the-art techniques, this text is an excellent resource for graduate and senior undergraduate students, network and software engineers, economists, and researchers.

Dusit Niyato is a professor in the School of Computer Science and Engineering at Nanyang Technological University, Singapore, and a Fellow of the IEEE.

Nguyen Cong Luong is a senior lecturer in Faculty of Information Technology at PHENIKAA University, Hanoi, Vietnam. He is also a researcher in PHENIKAA Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC, Hanoi, Vietnam.

Ping Wang is an associate professor in the Department of Electrical Engineering and Computer Science, York University.

Zhu Han is a John and Rebecca Moores Professor in both the Department of Electrical and Computer Engineering and the Computer Science Department at the University of Houston, and a Fellow of the IEEE and the AAAS.

Auction Theory for Computer Networks

DUSIT NIYATO

Nanyang Technological University

NGUYEN CONG LUONG

PHENIKAA University

PING WANG

York University

ZHU HAN

University of Houston

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781108480765 DOI: 10.1017/9781108691079

© Cambridge University Press 2020

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2020

Printed in the United Kingdom by TJ International, Padstow Cornwall

A catalogue record for this publication is available from the British Library.

ISBN 978-1-108-48076-5 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To our families

Contents

1	Intr	oduction	page 1
	1.1	A Brief Overview of the History of Auctions	1
	1.2	Auction Theory in Computer Networks	2
	1.3	Organization and Timeliness of This Book	3
		1.3.1 Organization	3
		1.3.2 Timeliness of the Book	7
	1.4	Acknowledgments	10
2	0ve	rview of Modern Computer Networks	11
	2.1	Internet of Things	11
		2.1.1 Definitions	11
		2.1.2 IoT Architecture	12
		2.1.3 Resources and Services of IoT	14
		2.1.4 Wireless Sensor Network	15
		2.1.5 Mobile Crowdsensing Network	16
	2.2	8	18
		2.2.1 General Architecture	18
		2.2.2 Cloud Data Center Networking	20
		2.2.3 Mobile Cloud Networking	21
		2.2.4 Edge Computing	22
		2.2.5 Cloud-Based Video-on-Demand System	24
	2.3	5G Wireless Networks	25
		2.3.1 Massive Multiple-Input and Multiple-Output	26
		2.3.2 Heterogeneous Networks	27
		2.3.3 Millimeter Wave Communications	29
		2.3.4 Cognitive Radio	30
		2.3.5 Device-to-Device Communications	31
		2.3.6 Machine-to-Machine Communications	33
	2.4	Data Collection and Resource Management	34
		2.4.1 Data Aggregation	34
		2.4.2 Task Allocation	35
		2.4.3 User Association	37
		2.4.4 Interference Management	38
			vii

viii Contents

		2.4.5 Wireless Caching	40
		2.4.6 Mobile Data Offloading	42
	2.5	Wireless Network Security	43
		2.5.1 Users and Attackers in Wireless Networks	44
		2.5.2 Eavesdropping Attack	44
		2.5.3 Denial-of-Service Attack	47
		2.5.4 Information Security Issues	49
		2.5.5 Illegitimate Behaviors in Wireless Networks	50
	2.6	Summary	51
3	Mec	hanism Design and Auction Theory in Computer Networks	52
	3.1	Mechanism Design	52
		3.1.1 Mechanism	52
		3.1.2 Mechanism Design	53
		3.1.3 Revelation Principle	55
		3.1.4 Incentive Compatibility	57
		3.1.5 Individual Rationality	58
		3.1.6 Economic Efficiency and Budget Balance	59
	3.2	Optimal Mechanisms	60
		3.2.1 Social Surplus and Profit	60
		3.2.2 Social Surplus Maximization Problem	61
		3.2.3 Profit Maximization Problem	63
	3.3	Auction Theory in Computer Networks	64
		3.3.1 Auction Basics	65
		3.3.2 Auction Theory for Computer Networks	68
		3.3.3 Basic Terminology in Auction Theory	69
	3.4	Summary	71
4	Ope:	n-Cry Auction	72
	4.1	English Auction	72
		4.1.1 English Auction Process	72
		4.1.2 Equilibrium Strategies	74
	4.2	Development of English Auction for Computer Networks	78
		4.2.1 System Model and Problem Formulation	79
		4.2.2 Walrasian Equilibrium	81
		4.2.3 English Auction for Walrasian Equilibrium	82
	4.3	Dutch Auction	83
		4.3.1 Dutch Auction Process	83
		4.3.2 Revenue Equivalence Theorem	85
		4.3.3 Equilibrium in Dutch Auction	86
	4.4	Development of Dutch Auction for Computer Networks	87
		4.4.1 Prevention of Black Hole Attacks in Mobile Ad Hoc Networks	87
		4.4.2 Relay Selection in the Internet of Things	91
		4.4.3 Channel Allocation in 5G Heterogeneous Networks	93

		Contents	I)
	4.5	English–Dutch Auction	97
	4.6	Summary	99
5	First	t-Price Sealed-Bid Auction	100
	5.1	Definition	100
	5.2	Equilibrium	101
		5.2.1 Strategic Analysis	101
		5.2.2 Bayesian–Nash Equilibrium	102
	5.3	First-Price Sealed-Bid Reverse Auction	104
	5.4	Development of First-Price Sealed-Bid Auction for Computer Networks	105
		5.4.1 Incentive Mechanism for Data Aggregation	105
		5.4.2 Market-Based Adaptive Task Allocation	109
		5.4.3 Market-Based Relay Selection	112
		5.4.4 Denial-of-Service Attack Prevention	114
	5.5	Summary	117
6	Seco	ond-Price Sealed-Bid Auction	119
	6.1	Second-Price Sealed-Bid Auction	119
		6.1.1 Definition	119
		6.1.2 Dominant Strategy and Nash Equilibrium	121
		6.1.3 Second-Price Sealed-Bid Reverse Auction	123
		6.1.4 Development of Second-Price Sealed-Bid Auction for	
		Computer Networks	124
	6.2	Vickrey–Clarke–Groves Auction	135
		6.2.1 Definition	135
		6.2.2 Description	136
		6.2.3 Dominant Strategy	139
		6.2.4 Examples	140
		6.2.5 Virtues	141
		6.2.6 Development of VCG Auction for Computer Networks	142
	6.3	Summary	157
7	Com	ibinatorial Auction	158
	7.1	Introduction	158
	7.2	Substitutable and Complementary Items	159
	7.3	Single-Round Combinatorial Auction	161
		7.3.1 Bidding Language	161
		7.3.2 Winner Determination Problem	163
	7.4	Iterative Combinatorial Auctions	165
		7.4.1 Ascending Proxy Auction	165
		7.4.2 Clock-Proxy Auction	167
	7.5	Development of the Combinatorial Auction for Computer Networks	170
		7.5.1 Spectrum Allocation in Cognitive Radio	170
		7.5.2 Virtualization of 5G Massive MIMO	174

x Contents

		7.5.3 Mobile Data Offloading in 5G HetNets	180
		7.5.4 Resource Allocation in D2D Communication	
		Underlying Cellular Networks	184
	7.6	Summary	188
8	Double-Sided Auction		
	8.1	Introduction	189
	8.2	Single-Round Double Auction	189
		8.2.1 Uniform Pricing Policy	192
		8.2.2 Discriminatory Pricing Policy	193
	8.3	Continuous Double Auction	194
	8.4	Development of Double Auction for Computer Networks	196
		8.4.1 Sensing Task Allocation in Participatory Sensing	197
		8.4.2 Location Privacy in Participatory Sensing	201
		8.4.3 Spectrum Allocation in Heterogeneous Networks	204
		8.4.4 Cloud Resource Allocation in Edge Computing	209
	8.5	Summary	214
9	Other Auctions		215
	9.1	Ascending Clock Auction	216
		9.1.1 Auction Process	216
		9.1.2 Application of Ascending Clock Auction for Physical	
		Layer Security	217
	9.2	Share Auction	221
	9.3	Online Auction	224
		9.3.1 Basic Terminologies	224
		9.3.2 Development of Online Auction for Cloud Resource Pooling	226
	9.4	Waiting-Line Auction	231
	9.5	•	235
10	Optir	nal Auction Using Machine Learning	236
		Optimal Auction	236
		Machine Learning	238
		Machine Learning for Optimal Auction	239
		10.3.1 Design	239
		10.3.2 Example	244
	10.4	Machine Learning for Myerson Auction	249
		10.4.1 Design	250
		10.4.2 Example	254
	10.5	Summary	259
	Rofo	rences	260
	Inde:		278