Cambridge University Press 978-1-108-48075-8 — Aerothermodynamics and Jet Propulsion Paul G. A. Cizmas Frontmatter <u>More Information</u>

Aerothermodynamics and Jet Propulsion

Get up to speed with this robust introduction to the aerothermodynamics principles underpinning jet propulsion, and learn how to apply these principles to jet engine components. This book is suitable for undergraduate students in aerospace and mechanical engineering, and for professional engineers working in jet propulsion. This textbook includes consistent emphasis on fundamental phenomena and key governing equations, providing students with a solid theoretical grounding on which to build practical understanding; clear derivations from first principles, enabling students to follow the reasoning behind key assumptions and decisions, and successfully apply these approaches to new problems; practical examples grounded in real-world jet propulsion scenarios illustrate new concepts throughout the book giving students an early introduction to jet and rocket engine considerations; and online materials for course instructors, including solutions, figures, and software resources, to enhance student teaching.

Paul G. A. Cizmas is Professor of Aerospace Engineering at Texas A&M University. Over the past 25 years, he has conducted research into numerical simulations of transport phenomena in propulsion systems covering a large range of topics, including reduced-order modeling, aeroelasticity, combustion, and computational fluid dynamics. He is a Fellow of American Society of Mechanical Engineers and an Associate Fellow of American Institute of Aeronautics and Astronautics.

Cambridge University Press 978-1-108-48075-8 — Aerothermodynamics and Jet Propulsion Paul G. A. Cizmas Frontmatter <u>More Information</u>

Aerothermodynamics and Jet Propulsion

Paul G. A. Cizmas Texas A&M University

Cambridge University Press 978-1-108-48075-8 — Aerothermodynamics and Jet Propulsion Paul G. A. Cizmas Frontmatter More Information

University Printing House, Cambridge CB2 8BS, United Kingdom One Liberty Plaza, 20th Floor, New York, NY 10006, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia 314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India 103 Penang Road, #05–06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781108480758 DOI: 10.1017/9781108691055

© Paul G. A. Cizmas 2022

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2022

Printed in the United Kingdom by TJ Books Limited, Padstow Cornwall

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data Names: Paul G. A. Cizmas, author. Title: Aerothermodynamics and jet propulsion / Paul G. A. Cizmas. Other titles: Aerothermodynamics and jet propulsion Description: New York : Cambridge University Press, [2021] | Includes bibliographical references and index. Identifiers: LCCN 2021029819 (print) | LCCN 2021029820 (ebook) | ISBN 9781108480758 (hardback) | ISBN 9781108691055 (epub) Subjects: LCSH: Aerothermodynamics. | Jet propulsion. | BISAC: SCIENCE / Mechanics / Fluids Classification: LCC TL574.A45 C57 2021 (print) | LCC TL574.A45 (ebook) | DDC 629.132/3–dc23 LC record available at https://lccn.loc.gov/2021029819 LC ebook record available at https://lccn.loc.gov/2021029820

ISBN 978-1-108-48075-8 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press 978-1-108-48075-8 — Aerothermodynamics and Jet Propulsion Paul G. A. Cizmas Frontmatter <u>More Information</u>

Brief Contents

Pr	Preface page xvii				
Nomenclature x					
Pa	nrt I	Basic Fluid Mechanics and Thermodynamics for Propulsion	1		
			2		
1	Jet		3		
	1.1	Introduction	3		
	1.2	Propulsion Systems Classification	3		
	1.3	Brief History of Jet Propulsion) 11		
	1.4	Jet Propulsion Principle	11		
2	Aer	othermodynamics Review	13		
	2.1	Introduction	13		
	2.2	Reynolds Transport Theorem	13		
	2.3	Conservation Laws	16		
	2.4	Thermodynamics Laws	29		
	2.5	Summary of Fundamental Equations	50		
3	Stea	ady One-Dimensional Gas Dynamics: Compressible Flows and Shock Waves	57		
	3.1	Introduction	57		
	3.2	Governing Equations	57		
	3.3	Dimensional and Nondimensional Reference Speeds	63		
	3.4	Isentropic and Nonisentropic Flows	68		
	3.5	Shock Waves	83		
4	Visc	ous Boundary Layer and Thermal Boundary Layer	107		
	4.1	Introduction	107		
	4.2	Viscous Boundary Layer	108		
	4.3	Thermal Boundary Layer	140		
5	Intr	oduction to Combustion	157		
-	5.1	Classification of Fuels	157		
	5.2	Thermodynamics of Chemistry	170		
	5.3	Standard Fuel	183		

V

Cambridge University Press 978-1-108-48075-8 — Aerothermodynamics and Jet Propulsion Paul G. A. Cizmas Frontmatter <u>More Information</u>

vi Brief Contents

Part II		Air-Breathing Engines	193
6	Ther	modynamics of Air-Breathing Engines	195
	6.1	Introduction	195
	6.2	Thrust Equation	195
	6.3	Engine Performance	198
	6.4	Brayton Cycle	204
	6.5	Gas Generator	209
	6.6	Turbojet	217
	6.7	Turbofan	240
	6.8	Turboprop and Turboshaft	264
	6.9	Ramjet	271
7	Jet E	ngine Components	281
	7.1	Introduction	281
	7.2	Inlet Diffusers	281
	7.3	Fans and Compressors	292
	7.4	Combustors	339
	7.5	Axial-Flow Turbines	347
	7.6	Exhaust Nozzles	366
8	Thru	st Augmentation	381
	8.1	Water Injection	381
	8.2	Afterburning (Reheat)	389
	8.3	Inter-turbine Combustion	395
Pa	art III	Rocket Engines	401
9	Clas	sification of Rocket Propulsion Systems	403
	9.1	Introduction	403
	9.2	Criteria for Classification of Rocket Engines	405
	9.3	Solid Rocket Motor	410
	9.4	Liquid Propellant Rocket Engine	411
	9.5	Hybrid Propellant Rocket Engine	418
	9.6	Nuclear Thermal Rocket Engine	420
	9.7	Electric Rocket Engine	421
10	Cher	nical Rocket Performance	424
	10.1	Thrust Equation	424
	10.2	Rocket Equation	424
	10.3	Design Thrust, \mathcal{T}_D	426
	10.4	Characteristic Velocities	429
	10.5	Thrust Coefficient, $C_{\mathcal{T}}$	431
	10.6	Maximum Thrust	436

		Brief Contents	vi
10.7 Co 10.8 Ver	nical Nozzle Thrust rtical Rocket Trajectory		440 442
Appendix A	ICAO Standard Atmosphere		447
Appendix B	Thermodynamic Properties Tables for Air		449
Appendix C Combust	Thermodynamic Properties of Stoichiometric ion Products		454
Appendix D	Reynolds' Transport Theorem		459
Index			461

Cambridge University Press 978-1-108-48075-8 — Aerothermodynamics and Jet Propulsion Paul G. A. Cizmas Frontmatter <u>More Information</u>

Contents

Preface page xvii				
N	omen	clature	XX	
Pa	art I	Basic Fluid Mechanics and Thermodynamics for Propulsion	1	
1	Jet F	Propulsion Principle	3	
	1.1	Introduction	3	
	1.2	Propulsion Systems Classification	3	
	1.3	Brief History of Jet Propulsion	5	
		1.3.1 Rocket Engines	5	
		1.3.2 Jet Engines	7	
		1.3.2.1 Evolution of Airplanes Powered by Jet Engines	9	
	1.4	Jet Propulsion Principle	11	
2	Aero	thermodynamics Review	13	
-	2.1	Introduction	13	
	2.2	Revnolds Transport Theorem	13	
		2.2.1 Time Derivatives: Partial, Total, and Material	14	
		2.2.1.1 Partial Time Derivative, $\partial c/\partial t$	14	
		2.2.1.2 Total Time Derivative, dc/dt	14	
		2.2.1.3 Material (or Substantial) Time Derivative, Dc/Dt	15	
		2.2.2 Reynolds Transport Theorem for a Control Volume	15	
		2.2.3 Reynolds Transport Theorem for a Control Mass	16	
	2.3	Conservation Laws	16	
		2.3.1 Mass Conservation Law	16	
		2.3.2 Equation of Motion	19	
		2.3.2.1 Inertial Forces	19	
		2.3.2.2 Volume (or Body) Forces	20	
		2.3.2.3 Surface Forces	20	
		2.3.2.4 Derivation of the Equation of Motion	20	
		2.3.3 Momentum Conservation Law	22	
		2.3.3.1 Equation of Motion vs. Momentum Conservation Equation	24	
		2.3.4 Angular Momentum (or Moment of Momentum) Conservation Law	27	
	2.4	Thermodynamics Laws	29	
		2.4.1 Elements of Thermodynamics Terminology	29	

ix

Cambridge University Press 978-1-108-48075-8 — Aerothermodynamics and Jet Propulsion Paul G. A. Cizmas Frontmatter <u>More Information</u>

x Contents

3

	2.4.2	First Law of Thermodynamics	32
	2.4.3	Second Law of Thermodynamics	33
		2.4.3.1 Statement of the Second Law of Thermodynamics	33
		2.4.3.2 Corollaries of the Second Law of Thermodynamics	33
	2.4.4	Zeroth Law of Thermodynamics	36
	2.4.5	Third Law of Thermodynamics	37
	2.4.6	First Law of Thermodynamics for a Control Volume	37
		2.4.6.1 Thermal Properties of Continuum	37
		2.4.6.2 Derivation of the First Law for a Control Volume	37
	2.4.7	Second Law of Thermodynamics for a Control Volume	40
	2.4.8	Thermodynamics of Single-Phase Gases	40
		2.4.8.1 Pure Substance; Equation of State; Perfect Gas	40
		2.4.8.2 Entropy Variation	44
		2.4.8.3 Thermodynamic Properties of Air	49
2.5	Sumr	nary of Fundamental Equations	50
Stea	dy One	-Dimensional Gas Dynamics: Compressible Flows and Shock Waves	57
3.1	Intro	duction	57
3.2	Gove	rning Equations	57
	3.2.1	Mass Conservation Equation	58
	3.2.2	Momentum Conservation Equation	59
	3.2.3	Energy Conservation Equation	60
		3.2.3.1 Stagnation State	61
3.3	Dime	nsional and Nondimensional Reference Speeds	63
	3.3.1	Speed of Sound and Mach Number	63
	3.3.2	Maximum Velocity	65
	3.3.3	Speed of Sound Corresponding to Stagnation Temperature	65
	3.3.4	Critical Speed	65
	3.3.5	λ Number	67
3.4	Isenti	ropic and Nonisentropic Flows	68
	3.4.1	Isentropic Flow	68
		3.4.1.1 Mass Flow Rate per Unit Area	70
		3.4.1.2 Area Ratio	73
		3.4.1.3 The Impulse Function	76
	3.4.2	Nonisentropic Flow	77
	3.4.3	Flow through Nozzles	78
		3.4.3.1 Converging Nozzle	81
		3.4.3.2 Converging-Diverging Nozzle	82
3.5	Shocl	k Waves	83
	3.5.1	Normal Shocks	84
		3.5.1.1 Governing Equations	84
		Mass Conservation Equation	85

Cambridge University Press 978-1-108-48075-8 — Aerothermodynamics and Jet Propulsion Paul G. A. Cizmas Frontmatter <u>More Information</u>

			Momentum Conservation Equation	85
			Energy Conservation Equation	86
			Second Law of Thermodynamics	86
			3.5.1.2 Working Formulas for Normal Shocks	88
			3.5.1.3 Rankine–Hugoniot Equations	89
			3.5.1.4 Prandtl Equation	92
			3.5.1.5 Entropy Variation and Impossibility of a Rarefaction	on Shock 93
		3.5.2	Oblique Shocks	94
			3.5.2.1 Governing Equations	94
			Mass Conservation Equation	95
			Momentum Conservation Equation	95
			Energy Conservation Equation	96
			3.5.2.2 Working Formulas for Oblique Shocks	96
			Rankine–Hugoniot Equations	97
			Meyer Equation	98
			Other Useful Equations	98
			Detached Shocks	101
4	Visc	ous Bou	undary Layer and Thermal Boundary Layer	107
	4.1	Intro	duction	107
	4.2	Visco	us Boundary Layer	108
		4.2.1	Boundary Layer Parameters	108
			4.2.1.1 Boundary Layer Thickness	109
			4.2.1.2 Displacement Thickness	109
			4.2.1.3 Momentum Thickness	110
			4.2.1.4 Shape Factor	111
		4.2.2	Viscous Boundary Layer Equations for Steady, Incompression	ible Flow 111
			4.2.2.1 Differential Form: Prandtl Boundary Layer Equation	ons 111
			4.2.2.2 Integral Form	115
		4.2.3	Laminar Boundary Layer	118
			4.2.3.1 Incompressible Flow over a Flat Plate: Blasius Solu	tion 118
			4.2.3.2 Thwaites Integral Momentum Method	124
		4.2.4	Turbulent Boundary Layer	127
			4.2.4.1 Turbulent Flow in a Pipe	130
			4.2.4.2 Turbulent Flow on a Flat Plate: Prandtl-Kármán H	Typothesis 137
	4.3	Therr	mal Boundary Layer	140
		4.3.1	Laminar Thermal Boundary Layer	147
		4.3.2	Turbulent Thermal Boundary Layer	147
			4.3.2.1 Heat Transfer-Skin Friction Analogy	147
			4.3.2.2 Chilton–Colburn Analogy	149

Cambridge University Press 978-1-108-48075-8 — Aerothermodynamics and Jet Propulsion Paul G. A. Cizmas Frontmatter <u>More Information</u>

xii Contents

5	Intro	oduction to Combustion 15					
	5.1	Classification of Fuels					
		5.1.1 Types of Fuels					
		5.1.1.1 Fuels for Aero Piston Engines					
		5.1.1.2 Fuels for Jet Engines					
		Fuel Specifications					
	5.1.2 Fuels Defined by Elements						
	5.1.3 Fuels Defined by Chemical Formula						
	5.2	Thermo	odynamics of Chemistry	170			
		5.2.1 I	First Law of Thermodynamics Applied to Chemical Reactions	170			
		5.2.2	Thermochemical Laws	171			
		5	5.2.2.1 Lavoisier and Laplace Law	171			
		5	5.2.2.2 Law of Constant Heat Summation (or Hess' Law)	172			
		5.2.3 \$	Standard Heats of Formation	173			
		5.2.4 I	Heats of Reaction	174			
		5.2.5 I	Heat of Combustion	179			
		5.2.6 I	Higher and Lower Heating Values	179			
		5.2.7 A	Adiabatic Flame Temperature	180			
	5.3	Standar	rd Fuel	183			
		rt II Air-Breathing Engines 19					
Pa	art II	Air-Bre	eathing Engines	193			
Pa 6	art II Ther	Air-Bre modynan	eatning Engines nics of Air-Breathing Engines	193 195			
Pa 6	Ther 6.1	Air-Bre modynan Introdu	eatning Engines nics of Air-Breathing Engines action	193 195 195			
Pa 6	Ther 6.1 6.2	Air-Bre modynan Introdu Thrust	eatning Engines nics of Air-Breathing Engines action Equation	193 195 195 195			
Pa 6	Ther 6.1 6.2 6.3	Air-Bre modynan Introdu Thrust Engine	eatning Engines nics of Air-Breathing Engines action Equation Performance	193 195 195 195 198			
Pa 6	Ther 6.1 6.2 6.3	Air-Bre modynan Introdu Thrust Engine 6.3.1 I	eatning Engines nics of Air-Breathing Engines action Equation Performance Propulsion Efficiency	193 195 195 195 198 198			
Pa 6	Ther 6.1 6.2 6.3	Air-Bre modynan Introdu Thrust Engine 6.3.1 I 6.3.2 T	eatning Engines nics of Air-Breathing Engines action Equation Performance Propulsion Efficiency Fhermal Efficiency	193 195 195 195 198 198 198			
Pa 6	Ther 6.1 6.2 6.3	Air-Bree modynam Introdu Thrust Engine 6.3.1 H 6.3.2 T 6.3.3 H	eatning Engines nics of Air-Breathing Engines action Equation Performance Propulsion Efficiency Phermal Efficiency Propeller Efficiency	193 195 195 195 198 198 198 198			
Pa 6	Ther 6.1 6.2 6.3	Air-Bree modynam Introdu Thrust Engine 6.3.1 H 6.3.2 T 6.3.3 H 6.3.4 Q	eatning Engines nics of Air-Breathing Engines action Equation Performance Propulsion Efficiency Phermal Efficiency Propeller Efficiency Overall Efficiency	193 195 195 195 198 198 198 199			
Pa 6	Ther 6.1 6.2 6.3	Air-Bree modynam Introdu Thrust Engine 6.3.1 H 6.3.2 T 6.3.3 H 6.3.4 C 6.3.5 T	eatning Engines nics of Air-Breathing Engines action Equation Performance Propulsion Efficiency Chermal Efficiency Propeller Efficiency Overall Efficiency Takeoff Thrust	193 195 195 198 198 198 198 199 199 200			
Pa 6	Ther 6.1 6.2 6.3	Air-Bree modynam Introdu Thrust Engine 6.3.1 H 6.3.2 T 6.3.3 H 6.3.4 C 6.3.5 T 6.3.6 A	eatning Engines nics of Air-Breathing Engines action Equation Performance Propulsion Efficiency Phermal Efficiency Propeller Efficiency Overall Efficiency Diverall Efficiency Fakeoff Thrust Aircraft Range – Breguet Equation	193 195 195 198 198 198 198 199 199 200 201			
Pa 6	Ther 6.1 6.2 6.3	Air-Bree modynam Introdu Thrust Engine 6.3.1 H 6.3.2 T 6.3.3 H 6.3.4 C 6.3.5 T 6.3.6 A 6.3.7 T	Eatning Engines nics of Air-Breathing Engines action Equation Performance Propulsion Efficiency Thermal Efficiency Propeller Efficiency Overall Efficiency Takeoff Thrust Aircraft Range – Breguet Equation Thrust Specific Fuel Consumption (TSFC)	193 195 195 195 198 198 198 199 199 200 201 202			
Pa 6	Ther 6.1 6.2 6.3	Air-Bree modynam Introdu Thrust Engine 6.3.1 H 6.3.2 T 6.3.3 H 6.3.4 C 6.3.5 T 6.3.6 A 6.3.7 T 6.3.8 H	Partning Engines nics of Air-Breathing Engines action Equation Performance Propulsion Efficiency Propeller Efficiency Propeller Efficiency Overall Efficiency Takeoff Thrust Aircraft Range – Breguet Equation Thrust Specific Fuel Consumption (TSFC) Brake Specific Fuel Consumption (BSFC)	193 195 195 198 198 198 198 199 199 200 201 202 203			
Pa 6	Ther 6.1 6.2 6.3	Air-Bree modynam Introdu Thrust Engine 6.3.1 H 6.3.2 T 6.3.3 H 6.3.4 C 6.3.5 T 6.3.6 A 6.3.7 T 6.3.8 H 6.3.9 H	Eatning Engines nics of Air-Breathing Engines action Equation Performance Propulsion Efficiency Propeller Efficiency Overall Efficiency Overall Efficiency Takeoff Thrust Aircraft Range – Breguet Equation Thrust Specific Fuel Consumption (TSFC) Brake Specific Fuel Consumption (EBSFC)	193 195 195 198 198 198 198 199 200 201 202 203 203			
Pa 6	Ther 6.1 6.2 6.3	Air-Bree modynam Introdu Thrust Engine 6.3.1 H 6.3.2 T 6.3.3 H 6.3.4 C 6.3.5 T 6.3.6 A 6.3.7 T 6.3.8 H 6.3.9 H 6.3.10 S	Eatning Engines nics of Air-Breathing Engines action Equation Performance Propulsion Efficiency Propeller Efficiency Propeller Efficiency Overall Efficiency Takeoff Thrust Aircraft Range – Breguet Equation Thrust Specific Fuel Consumption (TSFC) Brake Specific Fuel Consumption (BSFC) Equivalent Brake Specific Fuel Consumption (EBSFC) Specific Thrust	193 195 195 198 198 198 198 199 199 200 201 202 203 203 203 203			
Pa 6	6.4	Air-Bree modynam Introdu Thrust Engine 6.3.1 H 6.3.2 T 6.3.3 H 6.3.4 C 6.3.5 T 6.3.6 H 6.3.7 T 6.3.8 H 6.3.9 H 6.3.10 S Brayton	eatning Engines nics of Air-Breathing Engines action Equation Performance Propulsion Efficiency Thermal Efficiency Propeller Efficiency Overall Efficiency Overall Efficiency Takeoff Thrust Aircraft Range – Breguet Equation Thrust Specific Fuel Consumption (TSFC) Brake Specific Fuel Consumption (BSFC) Equivalent Brake Specific Fuel Consumption (EBSFC) Specific Thrust a Cycle	193 195 195 195 198 198 198 199 199 200 201 202 203 203 203 203 203			
Pa 6	6.4 6.5	Air-Bree modynam Introdu Thrust Engine 6.3.1 H 6.3.2 T 6.3.3 H 6.3.4 C 6.3.5 T 6.3.6 A 6.3.7 T 6.3.8 H 6.3.9 H 6.3.10 S Brayton Gas Ge	eatning Engines nics of Air-Breathing Engines action Equation Performance Propulsion Efficiency Propeller Efficiency Overall Efficiency Overall Efficiency Takeoff Thrust Aircraft Range – Breguet Equation Thrust Specific Fuel Consumption (TSFC) Brake Specific Fuel Consumption (BSFC) Equivalent Brake Specific Fuel Consumption (EBSFC) Specific Thrust n Cycle emerator	193 195 195 198 198 198 198 199 200 201 202 203 203 203 203 204 209			
Pa 6	6.4 6.5	Air-Bree modynam Introdu Thrust Engine 6.3.1 H 6.3.2 T 6.3.3 H 6.3.4 C 6.3.5 T 6.3.6 A 6.3.7 T 6.3.8 H 6.3.9 H 6.3.10 S Brayton Gas Ge 6.5.1 H	Eatning Engines nics of Air-Breathing Engines action Equation Performance Propulsion Efficiency Thermal Efficiency Propeller Efficiency Overall Efficiency Takeoff Thrust Aircraft Range – Breguet Equation Thrust Specific Fuel Consumption (TSFC) Brake Specific Fuel Consumption (BSFC) Equivalent Brake Specific Fuel Consumption (EBSFC) Specific Thrust a Cycle merator Introduction	193 195 195 198 198 198 199 199 200 201 202 203 203 203 203 203 203 204 209			
Pa 6	6.4 6.5	Air-Bree modynam Introdu Thrust Engine 6.3.1 H 6.3.2 T 6.3.3 H 6.3.4 C 6.3.5 T 6.3.6 A 6.3.7 T 6.3.8 H 6.3.9 H 6.3.10 S Brayton Gas Ge 6.5.1 H 6.5.2 C	eatning Engines nics of Air-Breathing Engines action Equation Performance Propulsion Efficiency Propeller Efficiency Propeller Efficiency Overall Efficiency Takeoff Thrust Aircraft Range – Breguet Equation Thrust Specific Fuel Consumption (TSFC) Brake Specific Fuel Consumption (BSFC) Equivalent Brake Specific Fuel Consumption (EBSFC) Specific Thrust n Cycle enerator Introduction Gas Generator Ideal Cycle with Air Standard, Constant Properties	193 195 195 195 198 198 198 199 199 200 201 202 203 203 203 203 203 203 204 209 209			
Ра 6	6.4 6.5	Air-Bree modynam Introdu Thrust Engine 6.3.1 H 6.3.2 T 6.3.3 H 6.3.4 C 6.3.5 T 6.3.6 A 6.3.7 T 6.3.8 H 6.3.9 H 6.3.10 S Brayton Gas Ge 6.5.1 H 6.5.2 C	eatning Engines mics of Air-Breathing Engines action Equation Performance Propulsion Efficiency Thermal Efficiency Propeller Efficiency Propeller Efficiency Overall Efficiency Takeoff Thrust Aircraft Range – Breguet Equation Thrust Specific Fuel Consumption (TSFC) Brake Specific Fuel Consumption (BSFC) Equivalent Brake Specific Fuel Consumption (EBSFC) Specific Thrust a Cycle merator Introduction Gas Generator Ideal Cycle with Air Standard, Constant Properties 5.5.2.1 Maximum net work	193 195 195 198 198 198 198 199 200 201 202 203 203 203 203 203 204 209 209 209 209			

Cambridge University Press 978-1-108-48075-8 — Aerothermodynamics and Jet Propulsion Paul G. A. Cizmas Frontmatter <u>More Information</u>

	6.6	Turbo	ojet	217		
		6.6.1	Introduction	217		
		6.6.2	Turbojet Configurations	217		
		6.6.3	Turbojet Real Cycle with Air Standard	221		
			6.6.3.1 Turbojet Real Cycle with Air Standard, Variable Properties	221		
			6.6.3.2 Turbojet Takeoff Real Cycle with Air Standard	227		
			6.6.3.3 Turbojet In-Flight Real Cycle with Air Standard	229		
		6.6.4	Turbojet Real Cycles with Actual Medium	231		
	6.7	Turbo	ofan	240		
		6.7.1	Introduction	240		
		6.7.2	Turbofan Configurations	242		
		6.7.3	Real Cycle Analysis	247		
	6.8	Turbo	oprop and Turboshaft	264		
		6.8.1	Introduction	264		
		6.8.2	Turboprop and Turboshaft Configurations	265		
		6.8.3	Real Cycle Analysis	266		
	6.9	Ramjet 2				
		6.9.1	Introduction	271		
		6.9.2	Ramjet Configurations	272		
		6.9.3	Real Cycle Analysis	273		
7	Jet Engine Components					
	7.1	Intro	duction	281		
	7.2	Inlet	Diffusers	281		
		7.2.1	Subsonic Inlets	281		
		7.2.2	Supersonic Inlets	283		
			7.2.2.1 External Compression	285		
			7.2.2.2 Internal Compression	287		
			7.2.2.3 Mixed Compression	292		
	7.3	Fans	and Compressors	292		
		7.3.1	Compression Process	294		
		7.3.2	Compressor Performance	297		
		7.3.3	Compressor Map	298		
		7.3.4	Rotating Stall and Surge	300		
		7.3.5	Axial Compressors	303		
			7.3.5.1 Velocity Diagram for Axial Compressors	303		
			7.3.5.2 Energy Transfer	308		
			7.3.5.3 Compressor Parameters	310		
			Flow Coefficient, ϕ	310		
			Work Coefficient, Ψ	310		
			Load Coefficient, \overline{w}	311		
			Mach Number, M	311		

Contents

xiii

Cambridge University Press 978-1-108-48075-8 — Aerothermodynamics and Jet Propulsion Paul G. A. Cizmas Frontmatter <u>More Information</u>

xiv Contents

			Hub-to-Tip Ratio, $r_{\rm hub}/r_{\rm tip}$	311
			de Haller Number, $W_{1.5}/W_1$	312
			Degree of Reaction, R'	312
		7.3.6	Centrifugal Compressors	314
			7.3.6.1 Configuration	315
			Impellers	315
			Diffusers	315
			7.3.6.2 Principles of Operation	316
			7.3.6.3 Energy Transfer from Impeller to Fluid	320
			Impeller with an Infinite Number of Blades	320
			Impeller with a Finite Number of Blades	325
	7.4	Comb	bustors	339
		7.4.1	Combustor Requirements	339
		7.4.2	Combustion Process	340
			7.4.2.1 Diffusion Flames	341
			7.4.2.2 Combustion in Premixed Gases	342
			7.4.2.3 Combustor Cooling, Pattern Factor, and Pressure Drop	344
		7.4.3	Combustor Architecture	345
	7.5	Axial	-Flow Turbines	347
		7.5.1	Turbine Performance	350
		7.5.2	Turbine Maps	352
		7.5.3	Turbine Stage Notation	353
		7.5.4	Turbine Velocity Diagram	354
		7.5.5	Energy Transfer	356
		7.5.6	Turbine Parameters	356
			7.5.6.1 Turbine Efficiencies	357
			7.5.6.2 Turbine Degrees of Reaction	361
			Impulse Turbine	364
			Reaction Turbine	365
			Impulse-Reaction Turbine	366
	7.6	Exhau	ust Nozzles	366
		7.6.1	Converging Nozzle	369
		7.6.2	Converging-Diverging Nozzle	370
		7.6.3	Variable Nozzle	374
8	Thru	st Augr	nentation	381
	8.1	Water	Injection	381
		8.1.1	Compressor Inlet Water Injection	382
		8.1.2	Water Injection Upstream of the Combustor	384
		8.1.3	Water Injection for Reducing Emissions and Maintenance Costs	385
	8.2	After	burning (Reheat)	389
	8.3	Inter-	turbine Combustion	395

Cambridge University Press 978-1-108-48075-8 — Aerothermodynamics and Jet Propulsion Paul G. A. Cizmas Frontmatter <u>More Information</u>

			Contents	xv
Pa	rt III	Rocket Engines		401
0	Class:f	institut of Declet Dramilation Stateme		402
9		ntroduction		403
	9.1 1	11.1 Essential Components of Pocket Engines		403
	9	1.1.1 Essential Components of Rocket Englies		403
	92 (riteria for Classification of Rocket Engines		405
	9.2 Q	2.2.1 Power Source		405
	9	2.2. Number of Propellants		408
	9	2.3 Type of Propellant		408
	9	.2.4 Engine Mode		409
	9.3 5	Solid Rocket Motor		410
	9.4 I	Liquid Propellant Rocket Engine		411
	9.5 I	Hybrid Propellant Rocket Engine		418
	9.6	Nuclear Thermal Rocket Engine		420
	9.7 I	Electric Rocket Engine		421
10	Chemi	cal Rocket Performance		424
	10.1	Thrust Equation		424
	10.2 I	Rocket Equation		424
	1	0.2.1 Expansion Correction (Expansion Efficiency), E		426
	10.3 I	Design Thrust, \mathcal{T}_D		426
	1	0.3.1 Dimensionless Mass Flow Function, $\Gamma(\gamma)$		428
	10.4 0	Characteristic Velocities		429
	10.5	Thrust Coefficient, $C_{\mathcal{T}}$		431
	1	0.5.1 Dimensionless Thrust Function, $\Gamma_{\mathcal{T}}$		433
	10.6 N	Maximum Thrust		436
	10.7 C	Conical Nozzle Thrust		440
	10.8	/ertical Rocket Trajectory		442
Ap	opendix	A ICAO Standard Atmosphere		447
Ap	opendix	B Thermodynamic Properties Tables for Air		449
Ap	opendix Combu	C Thermodynamic Properties of Stoichiometric Istion Products		454
Δr	nendix	D Revnolds' Transport Theorem		459
4				т
In	dex			461

Cambridge University Press 978-1-108-48075-8 — Aerothermodynamics and Jet Propulsion Paul G. A. Cizmas Frontmatter <u>More Information</u>

Preface

This textbook was developed from the course notes put together for the second-semester junior class, Aerothermodynamics and Propulsion, taught at Texas A&M University. This class is followed by two senior courses: Aerospace Propulsion, a jet engine design class, and Rocket Propulsion, a rocket engine design class. Although this textbook was not conceived for these design courses, it provides essential foundational knowledge for design. Fundamentally, the purpose of the book is to enhance the aerodynamics and thermodynamics background of students, and to enable them to apply this knowledge to understanding jet propulsion.

Aims of the Text

This text is written primarily for undergraduate students in their third year of study, and it also serves as a self-study for students and engineers interested in the field. It emphasizes the fundamental phenomena of aerothermodynamics and their governing equations, as well as the simplifying assumptions used when applying these governing equations to solving propulsion-related problems. Derivations of the governing equations from first principles are included, so that students can follow the reasoning and the assumptions made during this process. It is important to include these derivations because if students do not understand how these equations were derived, it is quite probable that they may apply them incorrectly. Furthermore, if students do not understand the reasoning process, they might not be able to apply these principles when solving new problems.

The concepts presented in the book are always followed by examples relevant to propulsion. In this way, the student is exposed to jet engines and rocket engines well before reaching the chapters that describe these engines.

Structure of the Book

The book is split into three parts. Part I presents the basic fluid mechanics and thermodynamics laws and derives the governing equations for different levels of approximation. Part II considers the specific aspects of aerodynamics and thermodynamics that apply to airbreathing engines, and describes and examines the jet engine components. Part III presents a classification of rocket engines and describes the fundamentals of rocket performance.

xvii

Cambridge University Press 978-1-108-48075-8 — Aerothermodynamics and Jet Propulsion Paul G. A. Cizmas Frontmatter <u>More Information</u>

xviii Preface

Both Part II and Part III rely on the material covered in Part I. Part II and Part III are independent of each other.

Part I begins with a classification of propulsion systems and a brief overview of the history of jet propulsion (Chapter 1). The jet propulsion principle is then introduced using an empirical description. Chapter 2 presents a review of aerothermodynamics. The Reynolds Transport Theorem is used to derive the conservation equations; the thermodynamic laws are established, and their expressions derived for a control volume. In Chapter 3, dimensional and dimensionless reference speeds are introduced, along with a discussion of isentropic and nonisentropic flows. Flows through nozzles are also included. Normal and oblique shock waves are then examined, and solution methods are presented for air and combustion products.

Chapter 4 is concerned with both viscous and thermal boundary layers, and applies them to propulsion problems. Chapter 5 is a brief introduction to combustion. First a classification of fuels is presented, followed by the thermochemical laws. The heats of formation and reaction needed to calculate the adiabatic flame temperature are presented next. It ends with a description of standard fuel.

Part II of the book discusses air-breathing engines. Chapter 6 derives the thrust equation and establishes the engine performance parameters. After introducing the Brayton cycle, the real cycles of the turbojet, turbofan, turboprop, and ramjet engines are analyzed. Chapter 7 presents the jet engine components: inlet diffusers, compressors and fans, combustors, turbines, and exhaust nozzles. The performance of these engine components is then connected to the real cycles covered in Chapter 6. Chapter 8 is devoted to thrust augmentation and such topics as water injection, afterburning, and intraturbine combustion.

Part III concludes with rocket engines and offers in Chapter 9 a classification and succinct presentation of the essential features and general equations related to rocket engines. Chapter 10 presents the performance of chemical rocket engines.

Teaching with this Book

The content of this textbook typically exceeds what can be covered in one semester. The instructor has the option to tailor the material to accommodate a variety of course syllabi based on the specifics of the program at their school.

A large number of examples and problems are included to help the reader understand the concepts and practice the methods introduced in the textbook. The difficulty of the problems varies, so the instructor can tailor homework assignments, tests, and exams accordingly. Solutions are offered to the instructor for all problems. The instructor is also offered web access to several codes that calculate (1) the thermodynamic properties of air and combustion products; (2) normal and oblique shock waves; (3) the Fanno line; (4) the Rayleigh line; (5) adiabatic temperature for different fuels; (6) real cycles analysis for all jet engines; (7) rocket thrust, nozzle exit velocity, and mass flow rate; (8) radial velocity variation in the axial compressor stage; and (9) radial velocity variation in the axial turbine stage.

Cambridge University Press 978-1-108-48075-8 — Aerothermodynamics and Jet Propulsion Paul G. A. Cizmas Frontmatter <u>More Information</u>

Preface xix

Finally, I would like to thank Professors Adrian Bejan and John Slattery, who guided me before and during the genesis of this book. Several chapters of the book were finalized during the summer of 2019 when I visited the DLR Institute of Aeroelasticity in Göttingen, Germany. I am grateful to my host at the institute, Professor Dr. Holger Hennings, and his colleagues, Drs. Virginie Chenaux, Jens Nitzsche, and David Quero Martin, with whom I had numerous interesting technical discussions as well as many relaxing moments. I would also like to express appreciation for the feedback received from my former colleague Dr. Gabriel Marinescu. Last but not least, I am grateful for the suggestions and comments I received from the reviewers of the manuscript.

Cambridge University Press 978-1-108-48075-8 — Aerothermodynamics and Jet Propulsion Paul G. A. Cizmas Frontmatter <u>More Information</u>

Nomenclature

Roman

A	-	Area
$A_{\rm cr}$	-	Critical area
a	_	Speed of sound
a_0	-	Speed of sound at stagnation temperature
С	-	Chord length or Circumference length
acr	_	Critical speed of sound
C_{f}	_	Skin friction drag coefficient
c _p	_	Specific heat at constant pressure
$c_{\rm v}$	-	Specific heat at constant volume
Ε	_	Energy
е	_	Specific energy per unit mass
F	_	Impulse function
$ec{F}_{\mathcal{V}}$	_	Body force
\vec{F}_{e}	_	External force
\vec{F}_{i}	_	Inertia force
\vec{F}_{p}	_	Pressure force
\vec{F}_{S}	_	Surface force
$\vec{F}_{ m vis}$	_	Viscous force
Fcr	_	Critical impulse function
\vec{f}	_	External force per unit mass
f	_	Fuel-air mass ratio
g	_	Gravitational acceleration
H	_	Shape factor
h	_	Enthalpy
h_0	_	Stagnation enthalpy
\vec{I}	_	Linear momentum
Ι	_	Rothalpy or Impulse
\vec{K}	_	Angular momentum
\mathcal{M}	_	Molecular mass
М	_	Mach number
$\vec{M}_{F_{\mathcal{V}}}$	_	Momentum due to body forces
\vec{M}_{F_S}	_	Momentum due to surface forces
m	_	Mass
'n	_	Mass flow rate

хх

Cambridge University Press 978-1-108-48075-8 — Aerothermodynamics and Jet Propulsion Paul G. A. Cizmas Frontmatter <u>More Information</u>

n	_	Number of degrees of freedom of the molecule
ĥ	_	Normal unit vector
\mathcal{P}	_	Power
$\mathcal{P}_{\mathrm{shaft}}$	_	Shaft power
\mathcal{P}_{shear}	_	Shear power
р	_	Static pressure
p_0	_	Stagnation pressure
Pr	_	Prandtl number
Q	_	Heat transfer
Q	_	Heat transfer rate
\mathcal{R}	_	Universal gas constant
R	_	Gas constant
R'	_	Degree of reaction
\vec{r}	_	Point vector
Re	_	Reynolds number
\mathcal{T}	_	Thrust
Т	_	Static temperature or Thwaites parameter
T_0	_	Stagnation temperature
t	_	Time
S	_	Entropy
S	_	Specific entropy per unit mass
St	_	Stanton number
U	_	Internal energy or Transport velocity
u	_	Specific internal energy per unit mass
<i>u</i> *	_	Friction velocity, $u^* = \sqrt{\tau_{\text{wall}}/\rho}$
\mathcal{V}	_	Volume
$ec{V}$	_	Velocity
$ec{V}^*$	_	Control volume velocity
$V_{\rm max}$	_	Maximum velocity for a given stagnation temperature
v	_	Specific volume per unit mass
W	_	Work transfer or Relative velocity
W_n	_	Work transfer due to normal stresses
W	_	Specific work transfer per unit mass
(x, y, z)	_	Cartesian coordinates
<i>Y</i> 1	_	Height of the element adjacent to the airfoil
y^+	_	Non-dimensional number, $y^+ = u^* y_1 / v$

Greek

α	_	Angle of absolute velocity
β	_	Angle of relative velocity
γ	_	Ratio of specific heats or Stagger angle

Cambridge University Press 978-1-108-48075-8 — Aerothermodynamics and Jet Propulsion Paul G. A. Cizmas Frontmatter <u>More Information</u>

xxii Nomenclature

δ^*	_	Displacement thickness
$\eta_{\rm p}$	_	Propulsion efficiency
$\eta_{ m th}$	_	Thermal efficiency
θ	_	Momentum thickness or Turning angle
λ	_	Mean free path or Lambda number or Boundary layer parameter of Excess air
μ	_	Dynamic viscosity
ν	_	Kinematic viscosity
ρ	_	Density
σ	_	System surface or Solidity
σ^*	_	Surface of control volume τ^*
τ	_	System volume
$ au^*$	_	Control volume
$ au_{ m wall}$	_	Shear stress at wall
Φ	_	Equivalence ratio
ϕ	_	Flow coefficient
Ψ	_	Work coefficient
ω	_	Angular velocity

Hebrew

≈ –	Generic variable
-----	------------------

Subscripts

0	_	Stagnation
1	_	Initial or upstream the shock wave
2	_	Final or Downstream the shock wave
$-\infty$	_	Upstream infinity
a	_	Atmospheric or Air or Axial component
cr	_	Critical
cm	_	Control mass
cv	_	Control volume
e	_	Exit
i	_	Inlet
n	_	Normal component
stoich	_	Stoichiometric
t	_	Tangential component
u	_	Component in the direction of the transport velocity, U