Aerothermodynamics and Jet Propulsion

Get up to speed with this robust introduction to the aerothermodynamics principles underpinning jet propulsion, and learn how to apply these principles to jet engine components. This book is suitable for undergraduate students in aerospace and mechanical engineering, and for professional engineers working in jet propulsion. This textbook includes consistent emphasis on fundamental phenomena and key governing equations, providing students with a solid theoretical grounding on which to build practical understanding; clear derivations from first principles, enabling students to follow the reasoning behind key assumptions and decisions, and successfully apply these approaches to new problems; practical examples grounded in real-world jet propulsion scenarios illustrate new concepts throughout the book giving students an early introduction to jet and rocket engine considerations; and online materials for course instructors, including solutions, figures, and software resources, to enhance student teaching.

Paul G. A. Cizmas is Professor of Aerospace Engineering at Texas A&M University. Over the past 25 years, he has conducted research into numerical simulations of transport phenomena in propulsion systems covering a large range of topics, including reduced-order modeling, aeroelasticity, combustion, and computational fluid dynamics. He is a Fellow of American Society of Mechanical Engineers and an Associate Fellow of American Institute of Aeronautics and Astronautics.
Aerothermodynamics and Jet Propulsion

Paul G. A. Cizmas
Texas A&M University
Brief Contents

Preface
Nomenclature

Part I Basic Fluid Mechanics and Thermodynamics for Propulsion

1 Jet Propulsion Principle
 1.1 Introduction
 1.2 Propulsion Systems Classification
 1.3 Brief History of Jet Propulsion
 1.4 Jet Propulsion Principle

2 Aerothermodynamics Review
 2.1 Introduction
 2.2 Reynolds Transport Theorem
 2.3 Conservation Laws
 2.4 Thermodynamics Laws
 2.5 Summary of Fundamental Equations

3 Steady One-Dimensional Gas Dynamics: Compressible Flows and Shock Waves
 3.1 Introduction
 3.2 Governing Equations
 3.3 Dimensional and Nondimensional Reference Speeds
 3.4 Isentropic and Nonisentropic Flows
 3.5 Shock Waves

4 Viscous Boundary Layer and Thermal Boundary Layer
 4.1 Introduction
 4.2 Viscous Boundary Layer
 4.3 Thermal Boundary Layer

5 Introduction to Combustion
 5.1 Classification of Fuels
 5.2 Thermodynamics of Chemistry
 5.3 Standard Fuel
vi Brief Contents

Part II Air-Breathing Engines

6 Thermodynamics of Air-Breathing Engines
 6.1 Introduction 195
 6.2 Thrust Equation 195
 6.3 Engine Performance 198
 6.4 Brayton Cycle 204
 6.5 Gas Generator 209
 6.6 Turbojet 217
 6.7 Turbofan 240
 6.8 Turboprop and Turboshaft 264
 6.9 Ramjet 271

7 Jet Engine Components
 7.1 Introduction 281
 7.2 Inlet Diffusers 281
 7.3 Fans and Compressors 292
 7.4 Combustors 339
 7.5 Axial-Flow Turbines 347
 7.6 Exhaust Nozzles 366

8 Thrust Augmentation
 8.1 Water Injection 381
 8.2 Afterburning (Reheat) 389
 8.3 Inter-turbine Combustion 395

Part III Rocket Engines

9 Classification of Rocket Propulsion Systems
 9.1 Introduction 403
 9.2 Criteria for Classification of Rocket Engines 405
 9.3 Solid Rocket Motor 410
 9.4 Liquid Propellant Rocket Engine 411
 9.5 Hybrid Propellant Rocket Engine 418
 9.6 Nuclear Thermal Rocket Engine 420
 9.7 Electric Rocket Engine 421

10 Chemical Rocket Performance
 10.1 Thrust Equation 424
 10.2 Rocket Equation 424
 10.3 Design Thrust, T_D 426
 10.4 Characteristic Velocities 429
 10.5 Thrust Coefficient, C_T 431
 10.6 Maximum Thrust 436
<table>
<thead>
<tr>
<th>Brief Contents</th>
<th>vii</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.7 Conical Nozzle Thrust</td>
<td>440</td>
</tr>
<tr>
<td>10.8 Vertical Rocket Trajectory</td>
<td>442</td>
</tr>
<tr>
<td>Appendix A ICAO Standard Atmosphere</td>
<td>447</td>
</tr>
<tr>
<td>Appendix B Thermodynamic Properties Tables for Air</td>
<td>449</td>
</tr>
<tr>
<td>Appendix C Thermodynamic Properties of Stoichiometric Combustion Products</td>
<td>454</td>
</tr>
<tr>
<td>Appendix D Reynolds’ Transport Theorem</td>
<td>459</td>
</tr>
<tr>
<td>Index</td>
<td>461</td>
</tr>
</tbody>
</table>
Contents

Preface page xvii
Nomenclature xx

Part I Basic Fluid Mechanics and Thermodynamics for Propulsion 1

1 Jet Propulsion Principle 3
 1.1 Introduction 3
 1.2 Propulsion Systems Classification 3
 1.3 Brief History of Jet Propulsion 5
 1.3.1 Rocket Engines 5
 1.3.2 Jet Engines 7
 1.3.2.1 Evolution of Airplanes Powered by Jet Engines 9
 1.4 Jet Propulsion Principle 11

2 Aerothermodynamics Review 13
 2.1 Introduction 13
 2.2 Reynolds Transport Theorem 13
 2.2.1 Time Derivatives: Partial, Total, and Material 14
 2.2.1.1 Partial Time Derivative, $\partial c/\partial t$ 14
 2.2.1.2 Total Time Derivative, dc/dt 14
 2.2.1.3 Material (or Substantial) Time Derivative, Dc/Dt 15
 2.2.2 Reynolds Transport Theorem for a Control Volume 15
 2.2.3 Reynolds Transport Theorem for a Control Mass 16
 2.3 Conservation Laws 16
 2.3.1 Mass Conservation Law 16
 2.3.2 Equation of Motion 19
 2.3.2.1 Inertial Forces 19
 2.3.2.2 Volume (or Body) Forces 20
 2.3.2.3 Surface Forces 20
 2.3.2.4 Derivation of the Equation of Motion 20
 2.3.3 Momentum Conservation Law 22
 2.3.3.1 Equation of Motion vs. Momentum Conservation Equation 24
 2.3.4 Angular Momentum (or Moment of Momentum) Conservation Law 27
 2.4 Thermodynamics Laws 29
 2.4.1 Elements of Thermodynamics Terminology 29
2.4.2 First Law of Thermodynamics 32
2.4.3 Second Law of Thermodynamics 33
 2.4.3.1 Statement of the Second Law of Thermodynamics 33
 2.4.3.2 Corollaries of the Second Law of Thermodynamics 33
2.4.4 Zeroth Law of Thermodynamics 36
2.4.5 Third Law of Thermodynamics 37
2.4.6 First Law of Thermodynamics for a Control Volume 37
 2.4.6.1 Thermal Properties of Continuum 37
 2.4.6.2 Derivation of the First Law for a Control Volume 37
2.4.7 Second Law of Thermodynamics for a Control Volume 40
2.4.8 Thermodynamics of Single-Phase Gases 40
 2.4.8.1 Pure Substance; Equation of State; Perfect Gas 40
 2.4.8.2 Entropy Variation 44
 2.4.8.3 Thermodynamic Properties of Air 49
2.5 Summary of Fundamental Equations 50

3 Steady One-Dimensional Gas Dynamics: Compressible Flows and Shock Waves 57
3.1 Introduction 57
3.2 Governing Equations 57
 3.2.1 Mass Conservation Equation 58
 3.2.2 Momentum Conservation Equation 59
 3.2.3 Energy Conservation Equation 60
 3.2.3.1 Stagnation State 61
3.3 Dimensional and Nondimensional Reference Speeds 63
 3.3.1 Speed of Sound and Mach Number 63
 3.3.2 Maximum Velocity 65
 3.3.3 Speed of Sound Corresponding to Stagnation Temperature 65
 3.3.4 Critical Speed 65
 3.3.5 λ Number 67
3.4 Isentropic and Nonisentropic Flows 68
 3.4.1 Isentropic Flow 68
 3.4.1.1 Mass Flow Rate per Unit Area 70
 3.4.1.2 Area Ratio 73
 3.4.1.3 The Impulse Function 76
 3.4.2 Nonisentropic Flow 77
 3.4.3 Flow through Nozzles 78
 3.4.3.1 Converging Nozzle 81
 3.4.3.2 Converging-Diverging Nozzle 82
3.5 Shock Waves 83
 3.5.1 Normal Shocks 84
 3.5.1.1 Governing Equations 84
 Mass Conservation Equation 85
4 Viscous Boundary Layer and Thermal Boundary Layer

4.1 Introduction

4.2 Viscous Boundary Layer

4.2.1 Boundary Layer Parameters

4.2.2 Viscous Boundary Layer Equations for Steady, Incompressible Flow

4.2.3 Laminar Boundary Layer

4.2.4 Turbulent Boundary Layer

4.3 Thermal Boundary Layer

4.3.1 Laminar Thermal Boundary Layer

4.3.2 Turbulent Thermal Boundary Layer

4.3.2.1 Heat Transfer-Skin Friction Analogy

4.3.2.2 Chilton–Colburn Analogy
5 Introduction to Combustion

5.1 Classification of Fuels

5.1.1 Types of Fuels

5.1.1.1 Fuels for Aero Piston Engines

5.1.1.2 Fuels for Jet Engines

5.1.2 Fuels Defined by Elements

5.1.3 Fuels Defined by Chemical Formula

5.2 Thermodynamics of Chemistry

5.2.1 First Law of Thermodynamics Applied to Chemical Reactions

5.2.2 Thermochemical Laws

5.2.2.1 Lavoisier and Laplace Law

5.2.2.2 Law of Constant Heat Summation (or Hess’ Law)

5.2.3 Standard Heats of Formation

5.2.4 Heats of Reaction

5.2.5 Heat of Combustion

5.2.6 Higher and Lower Heating Values

5.2.7 Adiabatic Flame Temperature

5.3 Standard Fuel

Part II Air-Breathing Engines

6 Thermodynamics of Air-Breathing Engines

6.1 Introduction

6.2 Thrust Equation

6.3 Engine Performance

6.3.1 Propulsion Efficiency

6.3.2 Thermal Efficiency

6.3.3 Propeller Efficiency

6.3.4 Overall Efficiency

6.3.5 Takeoff Thrust

6.3.6 Aircraft Range – Breguet Equation

6.3.7 Thrust Specific Fuel Consumption (TSFC)

6.3.8 Brake Specific Fuel Consumption (BSFC)

6.3.9 Equivalent Brake Specific Fuel Consumption (EBSFC)

6.3.10 Specific Thrust

6.4 Brayton Cycle

6.5 Gas Generator

6.5.1 Introduction

6.5.2 Gas Generator Ideal Cycle with Air Standard, Constant Properties

6.5.2.1 Maximum net work

6.5.3 Gas Generator Ideal Cycle with Air Standard, Variable Properties
6.6 Turbojet

6.6.1 Introduction 217
6.6.2 Turbojet Configurations 217
6.6.3 Turbojet Real Cycle with Air Standard 221
 6.6.3.1 Turbojet Real Cycle with Air Standard, Variable Properties 221
 6.6.3.2 Turbojet Takeoff Real Cycle with Air Standard 227
 6.6.3.3 Turbojet In-Flight Real Cycle with Air Standard 229
6.6.4 Turbojet Real Cycles with Actual Medium 231

6.7 Turbofan 240
6.7.1 Introduction 240
6.7.2 Turbofan Configurations 242
6.7.3 Real Cycle Analysis 247

6.8 Turboprop and Turboshaft 264
6.8.1 Introduction 264
6.8.2 Turboprop and Turboshaft Configurations 265
6.8.3 Real Cycle Analysis 266

6.9 Ramjet 271
6.9.1 Introduction 271
6.9.2 Ramjet Configurations 272
6.9.3 Real Cycle Analysis 273

7 Jet Engine Components 281
7.1 Introduction 281
7.2 Inlet Diffusers 281
 7.2.1 Subsonic Inlets 281
 7.2.2 Supersonic Inlets 283
 7.2.2.1 External Compression 285
 7.2.2.2 Internal Compression 287
 7.2.2.3 Mixed Compression 292
5.3 Fans and Compressors 292
 7.3.1 Compression Process 294
 7.3.2 Compressor Performance 297
 7.3.3 Compressor Map 298
 7.3.4 Rotating Stall and Surge 300
 7.3.5 Axial Compressors 303
 7.3.5.1 Velocity Diagram for Axial Compressors 303
 7.3.5.2 Energy Transfer 308
 7.3.5.3 Compressor Parameters 310
 Flow Coefficient, φ 310
 Work Coefficient, Ψ 310
 Load Coefficient, w 311
 Mach Number, M 311
xiv Contents

Hub-to-Tip Ratio, r_{hub}/r_{tip} 311

de Haller Number, $W_{1.5}/W_1$ 312

Degree of Reaction, R' 312

7.3.6 Centrifugal Compressors 314

7.3.6.1 Configuration 315

Impellers 315

Diffusers 315

7.3.6.2 Principles of Operation 316

7.3.6.3 Energy Transfer from Impeller to Fluid 320

Impeller with an Infinite Number of Blades 320

Impeller with a Finite Number of Blades 325

7.4 Combustors 339

7.4.1 Combustor Requirements 339

7.4.2 Combustion Process 340

7.4.2.1 Diffusion Flames 341

7.4.2.2 Combustion in Premixed Gases 342

7.4.2.3 Combustor Cooling, Pattern Factor, and Pressure Drop 344

7.4.3 Combustor Architecture 345

7.5 Axial-Flow Turbines 347

7.5.1 Turbine Performance 350

7.5.2 Turbine Maps 352

7.5.3 Turbine Stage Notation 353

7.5.4 Turbine Velocity Diagram 354

7.5.5 Energy Transfer 356

7.5.6 Turbine Parameters 356

7.5.6.1 Turbine Efficiencies 357

7.5.6.2 Turbine Degrees of Reaction 361

Impulse Turbine 364

Reaction Turbine 365

Impulse-Reaction Turbine 366

7.6 Exhaust Nozzles 366

7.6.1 Converging Nozzle 369

7.6.2 Converging-Diverging Nozzle 370

7.6.3 Variable Nozzle 374

8 Thrust Augmentation 381

8.1 Water Injection 381

8.1.1 Compressor Inlet Water Injection 382

8.1.2 Water Injection Upstream of the Combustor 384

8.1.3 Water Injection for Reducing Emissions and Maintenance Costs 385

8.2 Afterburning (Reheat) 389

8.3 Inter-turbine Combustion 395
Contents xv

Part III Rocket Engines 401

9 Classification of Rocket Propulsion Systems 403
 9.1 Introduction 403
 9.1.1 Essential Components of Rocket Engines 403
 9.1.2 Total and Specific Impulse 404
 9.2 Criteria for Classification of Rocket Engines 405
 9.2.1 Power Source 405
 9.2.2 Number of Propellants 408
 9.2.3 Type of Propellant 408
 9.2.4 Engine Mode 409
 9.3 Solid Rocket Motor 410
 9.4 Liquid Propellant Rocket Engine 411
 9.5 Hybrid Propellant Rocket Engine 418
 9.6 Nuclear Thermal Rocket Engine 420
 9.7 Electric Rocket Engine 421

10 Chemical Rocket Performance 424
 10.1 Thrust Equation 424
 10.2 Rocket Equation 424
 10.2.1 Expansion Correction (Expansion Efficiency), E 426
 10.3 Design Thrust, T_D 426
 10.3.1 Dimensionless Mass Flow Function, $\Gamma(\gamma)$ 428
 10.4 Characteristic Velocities 429
 10.5 Thrust Coefficient, C_T 431
 10.5.1 Dimensionless Thrust Function, Γ_T 433
 10.6 Maximum Thrust 436
 10.7 Conical Nozzle Thrust 440
 10.8 Vertical Rocket Trajectory 442

Appendix A ICAO Standard Atmosphere 447

Appendix B Thermodynamic Properties Tables for Air 449

Appendix C Thermodynamic Properties of Stoichiometric
 Combustion Products 454

Appendix D Reynolds’ Transport Theorem 459

Index 461
Preface

This textbook was developed from the course notes put together for the second-semester junior class, Aerothermodynamics and Propulsion, taught at Texas A&M University. This class is followed by two senior courses: Aerospace Propulsion, a jet engine design class, and Rocket Propulsion, a rocket engine design class. Although this textbook was not conceived for these design courses, it provides essential foundational knowledge for design. Fundamentally, the purpose of the book is to enhance the aerodynamics and thermodynamics background of students, and to enable them to apply this knowledge to understanding jet propulsion.

Aims of the Text

This text is written primarily for undergraduate students in their third year of study, and it also serves as a self-study for students and engineers interested in the field. It emphasizes the fundamental phenomena of aerothermodynamics and their governing equations, as well as the simplifying assumptions used when applying these governing equations to solving propulsion-related problems. Derivations of the governing equations from first principles are included, so that students can follow the reasoning and the assumptions made during this process. It is important to include these derivations because if students do not understand how these equations were derived, it is quite probable that they may apply them incorrectly. Furthermore, if students do not understand the reasoning process, they might not be able to apply these principles when solving new problems.

The concepts presented in the book are always followed by examples relevant to propulsion. In this way, the student is exposed to jet engines and rocket engines well before reaching the chapters that describe these engines.

Structure of the Book

The book is split into three parts. Part I presents the basic fluid mechanics and thermodynamics laws and derives the governing equations for different levels of approximation. Part II considers the specific aspects of aerodynamics and thermodynamics that apply to air-breathing engines, and describes and examines the jet engine components. Part III presents a classification of rocket engines and describes the fundamentals of rocket performance.
Both Part II and Part III rely on the material covered in Part I. Part II and Part III are independent of each other.

Part I begins with a classification of propulsion systems and a brief overview of the history of jet propulsion (Chapter 1). The jet propulsion principle is then introduced using an empirical description. Chapter 2 presents a review of aerothermodynamics. The Reynolds Transport Theorem is used to derive the conservation equations; the thermodynamic laws are established, and their expressions derived for a control volume. In Chapter 3, dimensional and dimensionless reference speeds are introduced, along with a discussion of isentropic and nonisentropic flows. Flows through nozzles are also included. Normal and oblique shock waves are then examined, and solution methods are presented for air and combustion products.

Chapter 4 is concerned with both viscous and thermal boundary layers, and applies them to propulsion problems. Chapter 5 is a brief introduction to combustion. First a classification of fuels is presented, followed by the thermochemical laws. The heats of formation and reaction needed to calculate the adiabatic flame temperature are presented next. It ends with a description of standard fuel.

Part II of the book discusses air-breathing engines. Chapter 6 derives the thrust equation and establishes the engine performance parameters. After introducing the Brayton cycle, the real cycles of the turbojet, turbofan, turboprop, and ramjet engines are analyzed. Chapter 7 presents the jet engine components: inlet diffusers, compressors and fans, combustors, turbines, and exhaust nozzles. The performance of these engine components is then connected to the real cycles covered in Chapter 6. Chapter 8 is devoted to thrust augmentation and such topics as water injection, afterburning, and intraturbine combustion.

Part III concludes with rocket engines and offers in Chapter 9 a classification and succinct presentation of the essential features and general equations related to rocket engines. Chapter 10 presents the performance of chemical rocket engines.

Teaching with this Book

The content of this textbook typically exceeds what can be covered in one semester. The instructor has the option to tailor the material to accommodate a variety of course syllabi based on the specifics of the program at their school.

A large number of examples and problems are included to help the reader understand the concepts and practice the methods introduced in the textbook. The difficulty of the problems varies, so the instructor can tailor homework assignments, tests, and exams accordingly. Solutions are offered to the instructor for all problems. The instructor is also offered web access to several codes that calculate (1) the thermodynamic properties of air and combustion products; (2) normal and oblique shock waves; (3) the Fanno line; (4) the Rayleigh line; (5) adiabatic temperature for different fuels; (6) real cycles analysis for all jet engines; (7) rocket thrust, nozzle exit velocity, and mass flow rate; (8) radial velocity variation in the axial compressor stage; and (9) radial velocity variation in the axial turbine stage.
Finally, I would like to thank Professors Adrian Bejan and John Slattery, who guided me before and during the genesis of this book. Several chapters of the book were finalized during the summer of 2019 when I visited the DLR Institute of Aeroelasticity in Göttingen, Germany. I am grateful to my host at the institute, Professor Dr. Holger Hennings, and his colleagues, Drs. Virginie Chenaux, Jens Nitzsche, and David Quero Martin, with whom I had numerous interesting technical discussions as well as many relaxing moments. I would also like to express appreciation for the feedback received from my former colleague Dr. Gabriel Marinescu. Last but not least, I am grateful for the suggestions and comments I received from the reviewers of the manuscript.
Nomenclature

Roman

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Area</td>
</tr>
<tr>
<td>A_{cr}</td>
<td>Critical area</td>
</tr>
<tr>
<td>a</td>
<td>Speed of sound</td>
</tr>
<tr>
<td>a_0</td>
<td>Speed of sound at stagnation temperature</td>
</tr>
<tr>
<td>c</td>
<td>Chord length or Circumference length</td>
</tr>
<tr>
<td>a_{cr}</td>
<td>Critical speed of sound</td>
</tr>
<tr>
<td>C_f</td>
<td>Skin friction drag coefficient</td>
</tr>
<tr>
<td>c_p</td>
<td>Specific heat at constant pressure</td>
</tr>
<tr>
<td>c_v</td>
<td>Specific heat at constant volume</td>
</tr>
<tr>
<td>E</td>
<td>Energy</td>
</tr>
<tr>
<td>e</td>
<td>Specific energy per unit mass</td>
</tr>
<tr>
<td>F</td>
<td>Impulse function</td>
</tr>
<tr>
<td>\vec{F}_V</td>
<td>Body force</td>
</tr>
<tr>
<td>\vec{F}_e</td>
<td>External force</td>
</tr>
<tr>
<td>\vec{F}_i</td>
<td>Inertia force</td>
</tr>
<tr>
<td>\vec{F}_p</td>
<td>Pressure force</td>
</tr>
<tr>
<td>\vec{F}_S</td>
<td>Surface force</td>
</tr>
<tr>
<td>\vec{F}_{vis}</td>
<td>Viscous force</td>
</tr>
<tr>
<td>F_{cr}</td>
<td>Critical impulse function</td>
</tr>
<tr>
<td>\tilde{f}</td>
<td>External force per unit mass</td>
</tr>
<tr>
<td>f</td>
<td>Fuel-air mass ratio</td>
</tr>
<tr>
<td>g</td>
<td>Gravitational acceleration</td>
</tr>
<tr>
<td>H</td>
<td>Shape factor</td>
</tr>
<tr>
<td>h</td>
<td>Enthalpy</td>
</tr>
<tr>
<td>h_0</td>
<td>Stagnation enthalpy</td>
</tr>
<tr>
<td>\tilde{I}</td>
<td>Linear momentum</td>
</tr>
<tr>
<td>I</td>
<td>Rothalpy or Impulse</td>
</tr>
<tr>
<td>\tilde{K}</td>
<td>Angular momentum</td>
</tr>
<tr>
<td>\mathcal{M}</td>
<td>Molecular mass</td>
</tr>
<tr>
<td>M</td>
<td>Mach number</td>
</tr>
<tr>
<td>\dot{M}_{FV}</td>
<td>Momentum due to body forces</td>
</tr>
<tr>
<td>\dot{M}_{Fs}</td>
<td>Momentum due to surface forces</td>
</tr>
<tr>
<td>m</td>
<td>Mass</td>
</tr>
<tr>
<td>\dot{m}</td>
<td>Mass flow rate</td>
</tr>
</tbody>
</table>
Nomenclature

\(n \) – Number of degrees of freedom of the molecule
\(\hat{n} \) – Normal unit vector
\(P \) – Power
\(P_{\text{shaft}} \) – Shaft power
\(P_{\text{shear}} \) – Shear power
\(p \) – Static pressure
\(p_0 \) – Stagnation pressure
\(\Pr \) – Prandtl number
\(Q \) – Heat transfer
\(\dot{Q} \) – Heat transfer rate
\(R \) – Universal gas constant
\(R' \) – Degree of reaction
\(\vec{r} \) – Point vector
\(\text{Re} \) – Reynolds number
\(T \) – Thrust
\(T \) – Static temperature or Thwaites parameter
\(T_0 \) – Stagnation temperature
\(t \) – Time
\(S \) – Entropy
\(s \) – Specific entropy per unit mass
\(\text{St} \) – Stanton number
\(U \) – Internal energy or Transport velocity
\(u \) – Specific internal energy per unit mass
\(u' \) – Friction velocity, \(u' = \sqrt{\tau_{\text{wall}}/\rho} \)
\(V \) – Volume
\(\vec{V} \) – Velocity
\(\vec{V}' \) – Control volume velocity
\(V_{\text{max}} \) – Maximum velocity for a given stagnation temperature
\(v \) – Specific volume per unit mass
\(W \) – Work transfer or Relative velocity
\(W_n \) – Work transfer due to normal stresses
\(w \) – Specific work transfer per unit mass
\((x, y, z) \) – Cartesian coordinates
\(y_1 \) – Height of the element adjacent to the airfoil
\(y'^* \) – Non-dimensional number, \(y'^* = u' y_1 / v \)

Greek

\(\alpha \) – Angle of absolute velocity
\(\beta \) – Angle of relative velocity
\(\gamma \) – Ratio of specific heats or Stagger angle
Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ^*</td>
<td>Displacement thickness</td>
</tr>
<tr>
<td>η_p</td>
<td>Propulsion efficiency</td>
</tr>
<tr>
<td>η_{th}</td>
<td>Thermal efficiency</td>
</tr>
<tr>
<td>θ</td>
<td>Momentum thickness or Turning angle</td>
</tr>
<tr>
<td>λ</td>
<td>Mean free path or Lambda number or Boundary layer parameter of Excess air</td>
</tr>
<tr>
<td>μ</td>
<td>Dynamic viscosity</td>
</tr>
<tr>
<td>ν</td>
<td>Kinematic viscosity</td>
</tr>
<tr>
<td>ρ</td>
<td>Density</td>
</tr>
<tr>
<td>σ</td>
<td>System surface or Solidity</td>
</tr>
<tr>
<td>σ^*</td>
<td>Surface of control volume τ^*</td>
</tr>
<tr>
<td>τ</td>
<td>System volume</td>
</tr>
<tr>
<td>τ^*</td>
<td>Control volume</td>
</tr>
<tr>
<td>τ_{wall}</td>
<td>Shear stress at wall</td>
</tr>
<tr>
<td>Φ</td>
<td>Equivalence ratio</td>
</tr>
<tr>
<td>ϕ</td>
<td>Flow coefficient</td>
</tr>
<tr>
<td>Ψ</td>
<td>Work coefficient</td>
</tr>
<tr>
<td>ω</td>
<td>Angular velocity</td>
</tr>
</tbody>
</table>

Hebrew

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\aleph</td>
<td>Generic variable</td>
</tr>
</tbody>
</table>

Subscripts

<table>
<thead>
<tr>
<th>Subscript</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Stagnation</td>
</tr>
<tr>
<td>1</td>
<td>Initial or upstream the shock wave</td>
</tr>
<tr>
<td>2</td>
<td>Final or Downstream the shock wave</td>
</tr>
<tr>
<td>∞</td>
<td>Upstream infinity</td>
</tr>
<tr>
<td>a</td>
<td>Atmospheric or Air or Axial component</td>
</tr>
<tr>
<td>cr</td>
<td>Critical</td>
</tr>
<tr>
<td>cm</td>
<td>Control mass</td>
</tr>
<tr>
<td>cv</td>
<td>Control volume</td>
</tr>
<tr>
<td>e</td>
<td>Exit</td>
</tr>
<tr>
<td>i</td>
<td>Inlet</td>
</tr>
<tr>
<td>n</td>
<td>Normal component</td>
</tr>
<tr>
<td>stoich</td>
<td>Stoichiometric</td>
</tr>
<tr>
<td>t</td>
<td>Tangential component</td>
</tr>
<tr>
<td>u</td>
<td>Component in the direction of the transport velocity, U</td>
</tr>
</tbody>
</table>