

Cambridge University Press 978-1-108-48074-1 — Wireless Communications and Networking for Unmanned Aerial Vehicles Walid Saad , Mehdi Bennis , Mohammad Mozaffari , Xingqin Lin Index More Information

Index

3D cellular network, 159, 161
3D deployment, 161
3D wireless network, 159, 168
3GPP
Release 15, 209, 231
Release 16, 232
3GPP standardization, 208, 227
3GPP standards, 209
4G, 212
5G, 15, 208, 234, 237
5G new radio, 207, 208, 234
6G, 207

Aerial wireless channels, 27, 37, 40, 51, 56, 67 characteristics, 27 height, 28
Air traffic management, 209
Airframe shadowing, 28, 43
Angel of arrival, 35
Angel of departure, 35
Angular spread, 57
Antenna array, 15, 181, 192–195, 198, 203
Antenna configuration, 29
Antenna tilt, 216
Artificial intelligence, 238

Backhaul, 18, 159, 169 Bang-bang solution, 201 Beamforming, 15, 115, 116, 181, 192, 193

Caching, 112–114, 116, 117, 120, 169, 174, 175, 183, 189, 191
Cauchy-Schwarz inequality, 186
Cell association, 101, 103, 117, 126, 133, 134, 145, 146, 149, 152, 159, 161, 165
Cellular technologies, 208
Channel modeling, 36, 40, 229
weather effects, 50
Circle packing, 93, 97, 122
Cloud radio access network, 112, 118
Coherence time, 52
CoMP, 183, 185, 189, 191, 205

Complex baseband signal, 60
Continuous phase modulation, 65
Control time, 193–195, 198–200, 202
Cooperation, 181
Cooperative communications, 181, 191
Coordinated multi-point transmission, 181, 218
Coverage probability, 73, 74, 78, 79, 83, 86, 96, 97, 181, 186, 187, 189, 191
Covering problem, 93

D2D, 70, 71, 77, 82, 84 Data acquisition, 233 Deep echo state network, 131, 132, 134 Deep reinforcement learning, 131, 134 Delay spread, 54 Device-to-device communication, 13, 70, 209 Diffraction, 35, 40, 42, 46 Direct sequence spread spectrum, 22, 64 Rake receiver, 65 spreading waveform, 64 Disk covering problem, 79 Doppler effects, 53 Doppler shift, 25, 26, 29, 63 Doppler spread, 29, 52 Down-tilt, 184 Duty cycle, 170

Echo state networks, 116, 131 Empirical path loss model, 40 Excess path loss model, 42

Facility location, 91, 92
Fading, 27, 35, 52, 188
Flight time, 68, 81, 146
Floating intercept model, 39
Flying mode detection, 231
Flying taxi, 21
Frequency division duplex, 211
Frequency hopping spread spectrum, 64
Frequency planning, 162, 163
Frequency reuse factor, 163
Frequency selectivity, 54

Cambridge University Press 978-1-108-48074-1 — Wireless Communications and Networking for Unmanned Aerial Vehicles Walid Saad , Mehdi Bennis , Mohammad Mozaffari , Xingqin Lin Index <u>More Information</u>

280 Index

Fresnel zone, 45	spiking neural networks, 175
Fronthaul, 113, 117, 118, 169, 173	Millimeter wave, 14
	Mobile broadband, 207
Game theory, 123, 128, 244	Mobility management, 9, 220
behavioral strategy, 130	Mobility models, 223
dynamic noncooperative game, 128	Multi-antenna techniques, 211
Nash equilibrium, 130, 249	Multipath, 26, 29, 35, 51
subgame perfect Nash equilibrium, 130, 132, 135	Multiple access, 81, 146
General ray tracing, 35	F
•	
Global navigation satellite system, 210	Nakagami fading, 59, 185
GPRS, 212	Network interdiction game, 246
GPS spoofing, 240, 242	Network slicing, 237
Handover, 221, 230	
Handover, 221, 230 Handover failure, 220, 222	OFDM, 211, 215, 235
High-altitude platforms, 3, 6, 10, 18, 44, 159	cyclic prefix, 215
	Optimal control, 195, 200, 201
Hover time, 145, 148, 150, 155	Optimal transport theory, 151, 165
T. 0	Monge-Kantorovich problem, 152
Information dissemination, 13	Orthogonal frequency division multiplexing, 62
Interference, 8, 70, 73, 82, 99, 109, 113, 123, 126,	cyclic prefix, 63
136, 181, 183, 185, 218	waveform, 63
Interference detection, 229, 232	Outage probability, 82, 87
Interference mitigation, 230	
Internet of Things, 16, 90, 100, 101, 107, 108, 111	D 41 1 25 20 21 22 24 27 20 40
	Path loss, 25, 30, 31, 33, 34, 37, 39, 40
Jain fairness index, 154	Path loss exponent, 37, 38
	Path planning, 123, 124, 128, 134
Large-scale propagation effects, 24, 30	Performance analysis, 68, 72, 80
Latency, 68, 81, 125, 138, 141, 160, 167, 223	Perturbation technique, 196
Licensed band, 169, 172, 174	Power control, 103–105, 126, 131, 232
Licensed-assisted access, 226	Propagation modeling, 7, 22, 23, 27, 36
Line-of-sight probability, 44, 47, 50, 73, 85, 97, 102,	Prospect theory, 244
148	framing, 251
	rationality parameter, 252
Line-of-sight propagation, 23, 28, 45	weighting effect, 251
Location-based services, 209	Public safety, 12, 13
Log-distance path loss, 37	
basic model, 37	Q-learning, 176
dual-slope, 40	Quadrotor, 193, 199
modified model, 39	Quadrotor, 193, 199
multi-slope, 40	
Loon, 3	Radio wave propagation
Low altitude platforms, 3, 6, 159	absorption, 24
LTE, 207, 209, 210, 216	diffraction, 23
evolved packet core, 212	fundamentals, 23
introduction, 210	reflection, 23
radio access network, 212	refraction, 23
radio interface, 213	scattering, 24
RAN protocol stack, 213	Ray tracing, 24, 31, 47
system architecture, 212	Reflection, 40
LTE-U, 169, 171, 226	Reinforcement learning, 123, 131, 134
	Reliability, 107, 109, 224, 225
Machine intelligence, 238	Remote radio heads, 112, 115
Machine learning, 90, 112, 116, 128, 160, 175, 179	Reservoir computing, 131
k-mean clustering, 117	Resource management, 7, 145, 159, 169, 174, 180
liquid state machines, 175	Resource planning, 159
recurrent neural networks, 112, 116, 131	Rician channel model, 58, 125

Cambridge University Press 978-1-108-48074-1 — Wireless Communications and Networking for Unmanned Aerial Vehicles Walid Saad , Mehdi Bennis , Mohammad Mozaffari , Xingqin Lin

More Information

Index

281

Scattering, 35, 40, 47	wireless networking scenarios, 12
Security strategy, 248	UAV base station, 6, 12, 14–16, 18, 68, 70, 73, 79
Shadowing, 30, 42	97–101, 104, 145, 147, 149, 159, 166, 170,
Small-scale propagation effects, 25, 51	181, 192, 203, 208, 226
Smart city, 20	challenges, 7
Spatial selectivity, 56	UAV BS, 94
Spectrum allocation, 174, 175	UAV relays, 9, 14, 18, 227
Spectrum management, 145, 169	research challenges, 10
Stochastic geometry, 68, 181	UAV security
binomial point process, 184	communication channel attacks, 240
Poisson point process, 69, 183	delivery systems, 243
Stop points, 80, 83	denial-of-service attacks, 241
	eavesdropping, 241
Thrust, 199	false data injection, 241
Time division duplex, 211	fly-away attack, 241
Time selectivity, 52	GPS attack, 240
Trajectory optimization, 123	GPS attacks, 241
Truncated octahedron, 161	information attacks, 241
Two-ray model, 31, 33, 34, 37	man-in-the-middle attack, 241
height dependent, 41	physical attacks, 244
	UAV user equipment, 8, 13, 18, 19, 41, 123, 124,
UAV, 1	128, 134, 159, 166, 181, 183, 184, 188, 208,
applications, 12	216, 224, 228, 229
classification, 3	identification, 9
command and control, 223, 237	research challenges, 8
definition, 1	Unlicensed band, 169, 174
deployment, 90, 100, 105, 116, 117, 161	
history, 1	Virtual reality, 18
identification, 209, 230–232	Virtual reality, 18 Virtual reality, ECHOTL, MING01, 16
interference, 217	• • • • • • • • • • • • • • • • • • • •
localization, 210	Virtual reality, MING01, 237
mission time, 124	Voronoi diagram, 149, 153, 166
mobility, 9, 79, 106, 125, 220, 230	
positioning, 210	Waveform, 22
regulation criteria, 5	Waveform design, 22, 60
regulations, 4	Wind dynamics, 195, 199
security, 240	Wireless research challenges, 6
trajectory, 123	
wireless communications and networking, 5	Zephyr, 3