

Wireless Communications and Networking for Unmanned Aerial Vehicles

A thorough treatment of UAV wireless communications and networking research challenges and opportunities. Detailed, step-by-step development of carefully selected research problems that pertain to UAV network performance analysis and optimization, physical layer design, trajectory and path planning, resource management, multiple access, cooperative communications, standardization, control, and security is provided. Featuring discussion of practical applications including drone delivery systems, public safety, IoT, virtual reality, and smart cities, this is an essential tool for researchers, students, and engineers interested in broadening their knowledge of the deployment and operation of communication systems that integrate or rely on unmanned aerial vehicles.

Walid Saad is a professor of Electrical and Computer Engineering at Virginia Tech and an IEEE Fellow.

Mehdi Bennis is an associate professor at the University of Oulu, Finland.

Mohammad Mozaffari is an experienced researcher at Ericsson, USA.

Xingqin Lin is a senior researcher at Ericsson, USA.

"This book, written by the most prominent experts in the field, provides a complete indepth analysis of UAV wireless communications. It should become a reference material for all the students, engineers, and researchers who are building our next-generation wireless communication networks."

Merouane Debbah, CentraleSupélec

"This is the most comprehensive book on the rapidly evolving field of wireless communications and networking for UAVs. The authors are among the researchers who have made the most profound contributions to this emerging field. Their impressive command of the subject matter results in a thorough presentation taking theory, practice, and industrial standards into account. A must-read for researchers and engineers working in this field."

Halim Yanikomeroglu, Carleton University

Wireless Communications and Networking for Unmanned Aerial Vehicles

WALID SAAD

Virginia Polytechnic Institute and State University

MEHDI BENNIS

University of Oulu, Finland

MOHAMMAD MOZAFFARI

Ericsson Research Silicon Valley

XINGQIN LIN

Ericsson Research Silicon Valley

More Information

Cambridge University Press 978-1-108-48074-1 — Wireless Communications and Networking for Unmanned Aerial Vehicles Walid Saad, Mehdi Bennis, Mohammad Mozaffari, Xingqin Lin

Cambridge UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781108480741 DOI: 10.1017/9781108691017

© Cambridge University Press 2020

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2020

Printed in the United Kingdom by TJ International Ltd, Padstow Cornwall

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Saad, Walid, author. | Bennis, Mehdi, author. | Mozaffari, Mohammad, 1989- author. | Lin, Xingqin, 1987- author.

Title: Wireless communications and networking for unmanned aerial vehicles /

Walid Saad, Mehdi Bennis, Mohammad Mozaffari, and Xingqin Lin.

Description: First edition. | New York : Cambridge University Press, 2020.

Includes bibliographical references and index.

Identifiers: LCCN 2019043875 (print) | LCCN 2019043876 (ebook)

| ISBN 9781108480741 (hardback) | ISBN 9781108691017 (ebook)

Subjects: LCSH: Drone aircraft - Control systems. | Drone aircraft - Computer networks. | Wireless communication systems.

Classification: LCC TL685.35 .S233 2020 (print) | LCC TL685.35 (ebook)

DDC 629.135-dc23

LC record available at https://lccn.loc.gov/2019043875

LC ebook record available at https://lccn.loc.gov/2019043876

ISBN 978-1-108-48074-1 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Walid Saad:

To Mary, Karim, Raphael, and everyone who believes the sky is not the limit

Mehdi Bennis:

To my beloved family

Mohammad Mozaffari:

To my family

Xingqin Lin:

This book is dedicated to my grandfather and father, Zuojiao Lin and Yuluan Lin, with love

Contents

	Acki	nowledgments	page xii
1		eless Communications and Networking with Unmanned Aerial	
	_	icles: An Introduction	1
		Brief Evolution of UAV Technology	1
	1.2	UAV Types and Regulations	2
		1.2.1 Classification of UAVs	3
		1.2.2 UAV Regulations	4
	1.3	Wireless Communications and Networking with UAVs	5
		1.3.1 UAVs as Flying Wireless Base Stations	6
		1.3.2 UAVs as Wireless Network User Equipment	8
		1.3.3 UAVs as Relays	9
	1.4	Summary and Book Overview	10
2	UAV	Applications and Use Cases	12
	2.1	UAVs for Public Safety Scenarios	12
	2.2	UAV-Assisted Ground Wireless Networks for Information	
		Dissemination	13
	2.3	Three-Dimensional MIMO and Millimeter-Wave Communication	
		with UAVs	14
	2.4	Drones in Internet of Things Systems	16
		UAVs for Virtual Reality Applications	16
		Drones in Wireless Backhauling for Ground Networks	18
	2.7	_	19
	2.8	UAVs in a Smart City	20
	2.9	Chapter Summary	21
3	Aeri	al Channel Modeling and Waveform Design	22
		Fundamentals of Radio Wave Propagation and Modeling	23
	3.2	Overview of Aerial Wireless Channel Characteristics	27
	3.3	Large-Scale Propagation Channel Effects	30
	5.5	3.3.1 Free-Space Path Loss	30
		3.3.2 Ray Tracing	31
		3.3.3 Log-Distance Path Loss Models	37
		3.3.4 Empirical Path Loss Models	40
		5.5.1 Empireur rum Eoss Models	70

More Information

viii **Contents**

		3.3.5 Shadowing	42
		3.3.6 Line-of-Sight Probability	44
		3.3.7 Atmospheric and Weather Effects	50
	3.4		51
		3.4.1 Time Selectivity and Doppler Spread	52
		3.4.2 Frequency Selectivity and Delay Spread	54
		3.4.3 Spatial Selectivity and Angular Spread	56
		3.4.4 Envelope and Power Distributions	58
	3.5	Waveform Design	60
		3.5.1 Waveform Basics	60
		3.5.2 Orthogonal Frequency Division Multiplexing	62
		3.5.3 Direct Sequence Spread Spectrum	64
		3.5.4 Continuous Phase Modulation	65
	3.6	Chapter Summary	67
4	Perf	ormance Analysis and Tradeoffs	68
	4.1		68
	4.2	Downlink Performance Analysis for UAV BS	70
		4.2.1 System Model	70
		4.2.2 Network with a Static UAV	73
		4.2.3 Mobile UAV BS Scenario	79
		4.2.4 Representative Simulation Results	83
	4.3	Chapter Summary	89
5	Depl	oyment of UAVs for Wireless Communications	90
	5.1		91
		5.1.1 Centralized Optimization Theory	91
	5.2	Deployment of UAV BSs for Optimized Coverage	94
		5.2.1 Deployment Model	94
		5.2.2 Deployment Analysis	96
		5.2.3 Representative Simulation Results	99
		5.2.4 Summary	100
	5.3	Deployment of UAV BSs for Energy-Efficient Uplink Data Collection	100
		5.3.1 System Model and Problem Formulation	101
		5.3.2 Ground-to-Air Channel Model	102
		5.3.3 Activation Model of IoT devices	102
		5.3.4 UAV BS Placement and Device Association with Power Control	103
		5.3.5 Update Time Analysis	106
		5.3.6 Representative Simulation Results	107
		5.3.7 Summary	111
	5.4	Proactive Deployment with Caching	112
		5.4.1 Model	112
		5.4.2 Optimal Deployment and Content Caching for UAV BSs	116

More Information

		Contents	ix
		5.4.3 Representative Simulation Results	118
		5.4.4 Summary	122
	5.5	Chapter Summary	122
6	Wire	eless-Aware Path Planning for UAV Networks	123
	6.1	8	123
	6.2	Wireless-Aware Path Planning for UAV UEs: Model and Problem	
		Formulation	124
		6.2.1 Problem Formulation	126
	6.3	6 6	128
		6.3.1 Path Planning as a Game	128
		6.3.2 Equilibrium of the UAV UE Path Planning Game	130
	6.4		
		Management	131
		6.4.1 Deep ESN Architecture	131
		6.4.2 Deep ESN-Based UAV UE Update Rule	133
	6.5	6.4.3 Deep RL for Wireless-Aware Path Planning	134
		Representative Simulation Results	136
	6.6	Chapter Summary	144
7		ource Management for UAV Networks	145
	7.1	Cell Association in UAV-Assisted Wireless Networks under Hover	
		Times Constraints	145
		7.1.1 System Model	146
		7.1.2 Optimal and Fair Cell Partitioning for Data Service Maximization	1.40
		under Hover Time Constraints	149
		7.1.3 Extensive Simulations and Numerical Results	153
	7.2	7.1.4 Summary	158
	7.2	Resource Planning and Cell Association for 3D Wireless Cellular Networks	159
		7.2.1 A Rigorous Model for 3D Cellular Networks	159
		7.2.1 A Rigorous Model for 3D Centular Networks 7.2.2 3D Deployment of a Cellular Network with UAV BSs:	139
		A Truncated Octahedron Structure	161
		7.2.3 Latency-Minimal 3D Cell Association	164
		7.2.4 Representative Simulation Results	166
		7.2.5 Summary	168
	7.3	Managing Licensed and Unlicensed Spectrum Resources in Wireless	
		Networks with UAVs	169
		7.3.1 Model of an LTE-U UAV BS Network	170
		7.3.2 Models for Data Rates and Queuing	172
		7.3.3 Resource Management Problem Formulation and Solution	174
		7.3.4 Representative Simulation Results	176
		7.3.5 Summary	179
	7.4	Chapter Summary	180
	7.4	Chapter Summary	180

x Contents

8	Coo	perative Communications in UAV Networks	181
	8.1	CoMP Transmission in Wireless Systems with Cellular-Connected UAV	
		UEs	183
		8.1.1 A Model for CoMP in Networks with Aerial UAV UEs	183
		8.1.2 Probabilistic Caching Placement and Serving Distance	
		Distributions	183
		8.1.3 Channel Model	185
		8.1.4 Analysis of Coverage Probability	186
		8.1.5 Representative Simulation Results	189
		8.1.6 Summary	191
	8.2	Reconfigurable Antenna Arrays of UAVs: UAV BS Scenario	192
		8.2.1 UAV-Based Antenna Array in the Sky: A Basic Model	193
		8.2.2 Transmission Time Minimization: Optimizing UAV Positions	
		within the Array	195
		8.2.3 Control Time Minimization: Time-Optimal Control of UAVs	199
		8.2.4 Representative Simulation Results	202
		8.2.5 Summary	204
	8.3	Chapter Summary	205
9	Fron	m LTE to 5G NR-Enabled UAV Networks	207
	9.1	Mobile Technologies-Enabled UAVs	208
		9.1.1 Connectivity Aspects	208
		9.1.2 Services beyond Connectivity	209
	9.2	Introduction to LTE	210
		9.2.1 Design Principles	211
		9.2.2 System Architecture	212
		9.2.3 Radio Interface Protocols	213
		9.2.4 Physical Layer Time-Frequency Structure	215
	9.3	UAV as LTE UE	216
		9.3.1 Coverage	216
		9.3.2 Interference	217
		9.3.3 Mobility Support	220
		9.3.4 Latency and Reliability	223
	9.4	UAV as LTE BS	226
	9.5	3GPP Standardization on Connected UAV	227
		9.5.1 3GPP Release-15 Study Item on LTE-Connected UAV	228
		9.5.2 3GPP Release-15 Work Item on LTE-Connected UAV	231
		9.5.3 3GPP Release-16 Study Item on Remote UAV Identification	232
	9.6		234
		9.6.1 A Primer on 5G NR	234
		9.6.2 Superior Connectivity Performance	236
		9.6.3 Service Differentiation with Network Slicing	237
		9.6.4 Network Intelligence	238
	9.7	Chapter Summary	238

	C	ontents	xi
10	Security of UAV Networks		240
10	10.1 Overview on UAV Security Problems		240
	10.2 Security of UAV UEs in Delivery Systems		243
	10.2.1 Modeling the Security of a UAV Delivery System		244
	10.2.2 UAV Security as a Network Interdiction Game		246
	10.2.3 Security of UAV Delivery Systems in Presence of Hur	man	
	Decision Makers		250
	10.2.4 Representative Simulation Results		253
	10.2.5 Summary		256
	10.3 Concluding Remarks on UAV Security		257
	References		258
	Index		279

Acknowledgments

This work was supported by the U.S. National Science Foundation under Grants CNS-1446621, IIS-1633363, CNS-1836802, CNS-1739642, OAC-1541105, and OAC-1638283 and, in part by the Academy of Finland project CARMA, in part by the INFOTECH project NOOR, and in part by the Kvantum Institute strategic project SAFAR.