

PALEOZOOLOGY AND PALEOENVIRONMENTS

Paleozoology and Paleoenvironments outlines the reconstruction of ancient climates, floras, and habitats on the basis of animal fossil remains recovered from archaeological and paleontological sites. In addition to outlining the ecological fundamentals and analytical assumptions attending such analyses, Tyler Faith and Lee Lyman describe and critically evaluate many of the varied analytical techniques that have been applied to paleozoological remains for the purpose of paleoenvironmental reconstruction. These techniques range from analyses based on the presence or abundance of species in a fossil assemblage to those based on taxon–free ecological characterizations. All techniques are illustrated using faunal data from archaeological or paleontological contexts.

Aimed at students and professionals, this volume will serve as a fundamental resource for courses in zooarchaeology, paleontology, and paleoecology.

J. Tyler Faith is Curator of Archaeology at the Natural History Museum of Utah and Assistant Professor of Anthropology at the University of Utah. His research addresses the relationships between Quaternary mammal communities, environmental change, and human–environment interactions, with an emphasis on eastern and southern Africa. This is his first book.

R. Lee Lyman is Emeritus Professor of Anthropology at the University of Missouri, Columbia. A scholar of late Quaternary paleozoology and human prehistory of the Pacific Northwest United States, he is author of *Vertebrate Taphonomy* (Cambridge, 1994), *Quantitative Paleozoology* (Cambridge, 2008), and *Theodore E. White and the Development of Zooarchaeology in North America* (2016).

PALEOZOOLOGY AND PALEOENVIRONMENTS

FUNDAMENTALS, ASSUMPTIONS, TECHNIQUES

J. TYLER FAITH

University of Utah, Salt Lake City and

R. LEE LYMAN

University of Missouri, Columbia

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781108480352

DOI: 10.1017/9781108648608

© Cambridge University Press 2019

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2019

Printed in the United Kingdom by TJ International Ltd, Padstow, Cornwall

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Faith, J. Tyler, author. | Lyman, R. Lee, author.

Title: Paleozoology and paleoenvironments: fundamentals, assumptions,

techniques / J. Tyler Faith, R. Lee Lyman

Description: Cambridge ; New York : Cambridge University Press, 2019. |

Includes bibliographical references and index.

Identifiers: LCCN 2018039941 | ISBN 9781108480352 (hardback) |

ISBN 9781108727327 (pbk.)

Subjects: LCSH: Paleontology. | Paleoecology.

Classification: LCC QE761.F35 2019 | DDC 560-dc23

LC record available at https://lccn.loc.gov/2018039941

ISBN 978-1-108-48035-2 Hardback

ISBN 978-1-108-72732-7 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

CONTENTS

List of Figures	page ix
List of Tables	xiii
Acknowledgments	XV
1 WHY A BOOK ON PALEOENVIRONMENTAL.	
RECONSTRUCTION FROM FAUNAL REMAINS?	I
A Bit More History	3
Volume Structure	5
What We Do Not Do	9
Final Comments	10
2 FUNDAMENTALS OF ECOLOGY AND BIOGEOGRAPHY	12
Historical Sketch	14
Biogeography	14
Ecology	16
Summary	21
Ecological Tolerances	21
Environments and Niches	26
Ecological Succession and Climax	31
What Is a Species to Do When the Environment Changes?	32
Top-Down or Bottom-Up Ecology	33
Resolution and Scale	36
Spatial and Temporal Scale	37
Kinds of Paleoenvironmental Change	41
Adaptation (Evolutionary Genetic) or Adjustment	
(Phenotypic Plasticity)	45
Conclusion	46
3 ANALYTICAL ASSUMPTIONS	48
Assumption 1: Uniformitarianism	50
Assumption 2: Nearest Living Relative	53
Assumption 3: Ecological Tolerances	55
Assumption 4: Taxonomic Presence/Absence	57

v

vi CONTENTS

Assumption 5: Faunal Composition	59
Assumption 6: Taxonomic Identification	62
Assumption 7: Sample Size and Taphonomy	64
Assumption 8: Small Bodies or Large Bodies	66
Assumption 9: Temporal Resolution	68
Assumption 10: Ecotone	72
Discussion	75
BACKGROUND OF SELECT PALEOZOOLOGICAL	
SAMPLES	77
Boomplaas Cave	78
Paleoenvironmental Summary	82
Homestead Cave	83
Paleoenvironmental Summary	90
Summary	90
•	
THE PRESENCE/ABSENCE OF TAXA	0.2
	92
A Bit of History	93
What about the Absence of a Taxon?	94
From Faunal List to Paleoenvironmental Reconstruction	95
Ordination	99
Correspondence Analysis	99
Detrended Correspondence Analysis	103
Other Ordination Techniques	105
One Species at a Time (Usually) Indicator Taxa	107
	107
Climatograph Multiple Taxa	108
Area of Sympatry	113 114
Mutual Climatic Range (Coexistence Approach)	114
The UTM-MCR Technique	119
Discussion	121
Summary	121
•	
5 ENVIRONMENTAL RECONSTRUCTION BASED ON	
TAXONOMIC ABUNDANCES	123
Taxonomic Presences or Abundances?	126
Is the Analysis of Taxonomic Presences a Safer Alternative?	129
How to Gain (or Lose) Confidence	134
Abundances of a Few Taxa	134
Abundances of Indicator Taxa	135
Abundance Indices	138
Discussion	142

		CONTENTS	vii
	History of Analyzing Taxonomic Abundances	142	
	Abundances of All Taxa in Assemblages	145	
	Ordination of Taxonomic Abundances	145	
	Other Techniques to Examine Abundances of All Taxa	149	
	Summary	153	
7	TAXON-FREE TECHNIQUES	155	
	Taxon Free: What It Is and What It Is Not	156	
	A Brief History	158	
	Autecological Approaches	160	
	Ecomorphology	160	
	Paleodietary Reconstruction	164	
	Synecological Approaches	171	
	Habitat Metrics	173	
	Ecometrics	184	
	Summary	196	
8	ENVIRONMENTAL INFERENCES BASED ON		
	TAXONOMIC DIVERSITY	197	
	What Is Diversity?	198	
	How Is Diversity Quantified?	199	
	Taxonomic Richness	201	
	Taxonomic Heterogeneity	213	
	Taxonomic Evenness	215	
	Which Metric Should I Choose?	217	
	Practical Considerations with Fossil Data	217	
	Taxonomic Scope	218	
	Recovery and Analytical Methods	219	
	Agent of Accumulation	220	
	Differential Fragmentation	221	
	Differential Skeletal Element Representation	222	
	Time Averaging	222	
	Paleoenvironmental Implications of Taxonomic Diversity	222	
	The Varied Response of Diversity to Environmental		
	Gradients	223	
	Paleoenvironmental Inferences	228	
	Case Study	229	
	Differential Identifiability	230	
	Differential Fragmentation	230	
	Skeletal Element Representation	230	
	Time Averaging	231	
	Agent of Bone Accumulation	232	
	Interpretation	232	
	Summary	233	

viii CONTENTS

9	TRANSFER FUNCTIONS AND QUANTITATIVE	
	PALEOENVIRONMENTAL RECONSTRUCTION	234
	How It Works	235
	The Analytical Toolkit	238
	Thackeray's Method	238
	Quantitative Bioclimatic Models	242
	Dental Ecometrics	246
	Tree Cover from Taxon-Free Characterizations	251
	Future Prospects	256
	The No-Analog Problem	257
	Further Cause for Concern	260
	Summary	265
10	SIZE CLINES AS PALEOENVIRONMENTAL INDICATORS	266
	Size Clines in Modern Organisms	268
	Bergmann's Rule: More than Just Temperature	268
	The Island Rule	272
	Summary	273
	Assumptions, Why Measure, and Method Basics	273
	Assumptions	274
	Why Measure?	276
	Method Basics	277
	Size Clines as a Paleoenvironmental Proxy	278
	One Way to Go about It	279
	Bergmann's Rule and Past Temperature Change	288
	Forage Availability and Predation in Large Herbivores	291
	Summary	299
11	SOME FINAL THOUGHTS	301
	Conservation Paleozoology	303
	Environments of Human Biological and Cultural Evolution	305
	What Next?	307
	Final Thoughts	308
Gl	ossary	311
Rę	ferences	319
Index		395

FIGURES

2.1	A model of Merriam's life zones superimposed on the	
	San Francisco Peaks, Arizona	page 18
2.2	A model of world biome types in relation to mean annual	
	precipitation and temperature	19
2.3	Models of variability in the abruptness of community boundaries	
	along an environmental gradient	20
2.4	Ecological tolerance curve	22
2.5	A model of how tolerances of individual organisms of a species	
2.6	produce a fundamental niche or a species-level tolerance curve A model of a two-dimensional or two environmental gradient	24
	niche for a species population	25
2.7	A model of presences and abundances of nine species along an	
	environmental gradient of moisture	26
2.8	A model of species' niches, non-analog faunas, and species	
	assemblage change over time as a result of environmental change	29
	A model of the trophic pyramid	34
2.10	A model of covariation of spatial and temporal scales of biological	
	phenomena and processes	39
2.11	A model of the approximate spatial and temporal scales provided by typical fossil assemblages of terrestrial vertebrates from different	
	depositional settings	40
2.12	A model of the spatial and temporal scales of selected weather	
	and climatic episodes	40
2.13	Categories of environmental change along space and time	42
2.14	Environmental fluctuation over time	43
3.I	One model of time averaging	70
3.2	Another model of time averaging	70
3.3	Models of the distribution of a species	73
5.I	Correspondence analysis and plot of axis 1 scores of taxonomic	
	presences, Boomplaas Cave ungulates	102
5.2	Abundances and correspondence analysis of taxa along a	
5.3	hypothetical environmental gradient spanning nineteen sites Correspondence analysis and detrended correspondence analysis	104
	of Homestead Cave small mammal assemblages	106

ix

x FIGURES

5.4	Modern distribution of Columbian ground squirrel in northwestern	
	North America	III
5.5	Climatograph for Columbian ground squirrel	112
5.6	Bioclimatic range graphs for Lemmiscus curtatus and Mictomys borealis	113
5.7	Schematic illustration of how an area of sympatry and mutual	
	climatic range is determined for a fossil fauna	116
5.8	Areas of sympatry for three mammalian faunas of different ages from	
	the Cherokee Site	118
6.I	Relative abundances of chisel-toothed kangaroo rats,	
	Homestead Cave	124
6.2	Relative abundances of small mammals from pellets of three owl	
	species, central Oregon	127
6.3	Species abundance distribution for small mammals from Stratum IV,	
	Homestead Cave	130
6.4	Percentage of taxa associated with mesic environments, Homestead	
	Cave Stratum IV	131
6.5	Absolute abundances of small mammal taxa, Wasden Site-Owl Cave	137
6.6	Relative abundances of small mammal taxa, Wasden Site-Owl Cave	138
6.7	Ratio abundances of pocket gophers and rabbits, Wasden	
	Site-Owl Cave	139
6.8	Relative abundances of some ungulate taxa, Boomplaas Cave	146
6.9	Correspondence analysis and plot of axis 1 scores of taxonomic	
	abundances, Boomplaas Cave ungulates	147
6.10	Chord distances for adjacent pairs of stratigraphic units, Homestead	
	Cave sequence	153
7. I	Distribution of mammalian taxa across locomotor and dietary classes,	
	Congo Basin and Serengeti Plains	156
7.2	Example of linear dimensions measured to study the ecomorphology	
	of the bovid astragalus	163
7.3	Temporal variation in the proportion of bovid astragali assigned to	
	habitat categories in the Shungura Formation	165
7.4	Dental microwear surfaces of a typical grazer and a typical browser	167
7.5	Schematic of dental microwear surfaces	168
7.6	Mean dental microwear complexity vs. anisotropy for modern	
	African bovids and fossil taxa from Laetoli, Tanzania	169
7.7	Schematic of mesowear variables	170
7.8	Univariate mesowear scores for maxillary third molars of modern	
	Australian marsupials compared with fossil Macropus giganteus titan	171
7.9	Distribution of species across body size classes, locomotor regimes,	
	and dietary classes across modern habitats relative to the Upper	
7.10	Ndolanya Beds (Laetoli) P. elationship between woody cover and the first axis of a CA	175
/.10	Relationship between woody cover and the first axis of a CA of taxonomic presences in modern Serengeti raptor roosts	T 0 0
	or taxonomic diesences in modern Sciengen fablor foosis	180

7.11	Habitat spectra for Serengeti raptor roosts across a gradient from	
	open to wooded habitats	182
7.12	Mammal communities associated with Kalahari thornveld	
	vegetation and moist tropical forest	187
7.13	Interpretive algorithm for cenograms	188
7.14	Cenograms for Boomplaas Cave and the relationship between	
	richness and slope for large and small mammals	191
7.15	Average hypsodonty index of mandibular third molars for 133	
	extant ungulates	194
7.16	Changes in mean hypsodonty index and relative abundance of	
	ungulate grazers, Boomplaas Cave	195
8.1	Four hypothetical faunal assemblages of varied richness and evenness	200
8.2	Relationship between sample size and metrics of taxonomic	
	richness. Homestead Cave Stratum IV	203
8.3	Relationship between sample size and NTAXA for the Boomplaas	Č
	Cave ungulates	204
8.4	Relationship between sample size and NTAXA assumed by	
	Margalef's richness index and Menhinick's richness index	206
8.5	Sampling-to-redundancy curves showing cumulative taxonomic	
	richness and heterogeneity across six annual field seasons	208
8.6	Rarefaction curves for Boomplaas Cave ungulates	210
	Rarefaction curves for mammal remains, Marmes site	211
8.8	Two different relationships between sample size and NTAXA,	
	Homestead Cave and Samwell Cave	212
8.9	Relationship between sample size and metrics of taxonomic	
	heterogeneity and evenness, Homestead Cave Stratum IV	214
8.10	Comparison of Shannon index for Boomplaas Cave ungulates	
	to values observed when assemblages are standardized to an	
	equivalent sample size	215
8.11	Relationship between mean annual precipitation and species	-
	richness for sub-Saharan African ungulates	224
8.12	Relationship between mean annual precipitation and species	·
	richness for Australian mammals	225
8.13	Assemblage evenness and the abundance of kangaroo rats,	-
	Homestead Cave	226
8.14	Assemblage evenness and the abundance of reindeer, Grotte XVI	226
	Changes in evenness and richness in micromammal assemblage,	
	Boomplaas Cave	227
8.16	Changes in evenness and richness in ungulate assemblage,	,
	Boomplaas Cave	228
8.17	Relationship between richness and abundance of isolated teeth,	
,	abundance of skull elements, time averaging, and anthropogenic	
	bone modifications in the ungulate assemblage from Boomplaas Cave	231

xi

FIGURES

xii FIGURES

9.1	Ranking of temperature reconstructions from coolest to warmest	
	for Boomplaas Cave micromammals	241
9.2	Ranking of temperature and precipitation reconstructions for	
	Boomplaas Cave rodents	246
9.3	Ranking of temperature and precipitation reconstructions for	
	Boomplaas Cave large herbivores	250
9.4	Schematic representation of tree cover categories	252
9.5	Relationship between faunal community composition	
	and %heavy tree cover	255
9.6	Faunal PCI, %heavy tree cover, and ranking of %heavy tree cover	
	reconstructions for Boomplaas Cave large mammals	256
9.7	Range of temperatures in which genus Fraxinus (ash trees) are	
	found in North America today	259
9.8	Antarctic ice core records of changes in atmospheric CO ₂ ,	
	past 800,000 years	262
9.9	Predicted superiority of C ₃ and C ₄ photosynthetic pathways as	
	a function of daytime growing-season temperature and atmospheric	
	CO ₂ concentrations	262
9.10	Reconstructed mean annual precipitation for the Great Plains	
	of North America, past ~25 Ma	264
IO.I	Geometric bases of Bergmann's rule, and of Allen's rule	267
10.2	Changes in adult body mass of moose individuals across a	
	latitudinal gradient, Sweden	269
10.3	Frequency distributions of mandibular alveolar lengths in	
	bushy-tailed woodrats	286
10.4	Mean mandibular alveolar length of bushy-tailed woodrats,	
	Gatecliff Shelter, Nevada	287
10.5	Mandibular alveolar lengths and relationship with mean annual	
	temperature, modern East African mole-rats and Holocene	
	assemblages	289
10.6	Changes in astragalus size in white-tailed deer relative to changes in	
	summer insolation, past 10,000 years	292
10.7	Heuristic model showing influence of net primary productivity and	
	population density on white-tailed deer growth rates and body size	294
	Changes in weight of deer harvested 1971–2005, Fort Hood, Texas	295
10.9	Changes in Great Plains bison calcaneal length, past 37,000 years	297

TABLES

4.I	Stratigraphy and chronology of Boomplaas Cave	page 80
4.2	Taxonomic abundances (MNI) for Boomplaas Cave microfauna	81
4.3	Taxonomic abundances (NISP) for Boomplaas Cave macromammals	84
4.4	Stratigraphy and chronology of Homestead Cave	87
4.5	Taxonomic abundances (NISP) for Homestead Cave small mammals	88
5. I	The presence of ungulate species through time at Boomplaas Cave	97
5.2	Modern climate data for Columbian ground squirrel	IIO
5.3	Small mammal faunas from the Cherokee archaeological site	117
6.1	Taxonomic abundances (NISP) of small mammals from Homestead	
6.2	Cave Stratum IV and randomly sub-sampled assemblages Taxonomic abundances (NISP) and adjusted residuals for	132
	Homestead Cave small mammals	151
7. I	Preferred habitats of Cherokee archaeological site stenotopic	
	micromammals	172
7.2	Niche models for Serengeti rodents	181
7.3	Climatic zones and corresponding vegetation biomes used in	
	bioclimatic model	183
7·4 8.1	Example of the bioclimatic model technique The number of non-overlapping taxa for five hypothetical	185
	assemblages of Odocoileus spp.	202
8.2	Sample size and various indices of richness for the Boomplaas	
	Cave ungulates	205
8.3	Taxonomic list and diversity indices for Henderson Island	
	fish remains	220
8.4	Diversity indices for small mammal assemblages accumulated by	
	three owl species in Oregon	221
9.1	Factor I loadings and mean annual temperature of South African	
	rodent taxa	239
9.2	Reconstructions of past climate for Boomplaas Cave micromammals	240
9.3	Comparison of observed mean annual temperatures with values	
	reconstructed using transfer functions for rodents	243
9.4	Hypsodonty score and lophedness for Boomplaas Cave primates	
	and ungulates	2.48

xiii

xiv TABLES

9.5	Mean hypsodonty score and lophedness of large mammalian	
	herbivores and reconstructions of past climate, Boomplaas Cave	249
9.6	Ecological groups for mammals	252
9.7	Percentage of large mammal species (>1 kg) across ecological	
	categories in modern communities	254
IO.I	A selection of mammalian taxa for which size clines across	
	spatial environmental gradients have been used to infer	
	paleoenvironmental change	280

ACKNOWLEDGMENTS

This volume is the outcome of years of reflection and discussion with our mentors, collaborators, colleagues, and friends, and we sincerely thank the many people who contributed directly or indirectly to the ideas presented here. We are particularly indebted to those who responded to our questions, comments, and requests while writing this volume: Andrew Barr provided a brief but important discussion concerning measurements in ecomorphology; Larisa DeSantis sent us dental microwear photosimulations; Andrew Du supplemented our limited coding skills and offered insightful comments on taxonomic diversity; Christine Janis and John Damuth sent us raw data concerning precipitation estimates for the Great Plains; Julien Louys clarified points concerning a methodological technique; Dan Peppe directed us to some useful paleobotanical literature; Steve Wolverton provided raw data concerning the size of deer from Texas. René Bobe and an anonymous reader inspired useful fine-tuning in later drafts of this volume. A portion of Faith's contribution to this volume was supported by an Australian Research Council DECRA fellowship at the University of Queensland.

