Stable Lévy Processes via Lamperti-Type Representations

Stable Lévy processes lie at the intersection of Lévy processes and self-similar Markov processes. Processes in the latter class enjoy a Lamperti-type representation as the space-time path transformation of so-called Markov additive processes (MAPs). This completely new mathematical treatment takes advantage of the fact that the underlying MAP for stable Lévy processes can be explicitly described in one dimension and semi-explicitly described in higher dimensions, and uses this approach to catalogue a large number of explicit results describing the path fluctuations of stable Lévy processes in one and higher dimensions.

Written for graduate students and researchers in the field, this book systematically establishes many classical results as well as presenting many recent results appearing in the last decade, including previously unpublished material. Topics explored include first hitting laws for a variety of sets, path conditionings, law-preserving path transformations, the distribution of extremal points, growth envelopes and winding behaviour.

ANDREAS E. KYPRIANOU was educated at the University of Oxford and University of Sheffield and is currently a professor of mathematics at the University of Bath. He has spent over 25 years working on the theory and application of path-discontinuous stochastic processes and has over 130 publications, including a celebrated graduate textbook on Lévy processes. During his time in Bath, he co-founded and directed the Prob-L@B (Probability Laboratory at Bath), was PI for a multi-million-pound EPSRC Centre for Doctoral Training, and is currently the Director of the Bath Institute for Mathematical Innovation.

JUAN CARLOS PARDO is a full professor at the department of Probability and Statistics at Centro de Investigación en Matemáticas (CIMAT). He was educated at the Universidad Nacional Autónoma de México (UNAM) and Université de Paris VI (Sorbonne Université). He has spent over 13 years working on the theory and application of pathdiscontinuous stochastic processes and has more than 50 publications in these areas. During the academic year 2018–2019, he held the David Parkin visiting professorship at the University of Bath.

INSTITUTE OF MATHEMATICAL STATISTICS MONOGRAPHS

Editorial Board John Aston (University of Cambridge) Arnaud Doucet (University of Oxford) Ramon van Handel (Princeton University) Nancy Reid, General Editor (University of Toronto)

IMS Monographs are concise research monographs of high quality on any branch of statistics or probability of sufficient interest to warrant publication as books. Some concern relatively traditional topics in need of up-to-date assessment. Others are on emerging themes. In all cases the objective is to provide a balanced view of the field.

Other Books in the Series

- 1. Large-Scale Inference, by Bradley Efron
- 2. Nonparametric Inference on Manifolds, by Abhishek Bhattacharya and Rabi Battacharya
- 3. The Skew-Normal and Related Families, by Adelchi Azzalini
- 4. Case-Control Studies, by Ruth H. Keogh and D. R. Cox
- 5. Computer Age Statistical Inference, by Bradley Efron and Trevor Hastie
- 6. *Computer Age Statistical Inference (Student Edition)*, by Bradley Efron and Trevor Hastie

Stable Lévy Processes via Lamperti-Type Representations

ANDREAS E. KYPRIANOU University of Bath

JUAN CARLOS PARDO Centro de Investigación en Matemáticas, A.C.

CAMBRIDGE

Cambridge University Press 978-1-108-48029-1 — Stable Lévy Processes via Lamperti-Type Representations Andreas E. Kyprianou , Juan Carlos Pardo Frontmatter <u>More Information</u>

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781108480291 DOI: 10.1017/9781108648318

© Andreas E. Kyprianou and Juan Carlos Pardo 2022

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2022

Printed in the United Kingdom by TJ Books Limited, Padstow Cornwall

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data Names: Kyprianou, Andreas E., author. | Pardo, Juan Carlos, 1976- author. Title: Stable Lévy processes via Lamperti-type representations / Andreas E. Kyprianou and Juan Carlos Pardo. Description: New York : Cambridge University Press, 2022. | Series: Institute of mathematical statistics monographs | Includes bibliographical references and index. Identifiers: LCCN 2021037625 (print) | LCCN 2021037626 (ebook) | ISBN 9781108480291 (hardback) | ISBN 9781108648318 (ebook) Subjects: LCSH: Lévy processes. | Stochastic processes. Classification: LCC QA274.73 .K975 2022 (print) | LCC QA274.73 (ebook) | DDC 519.2/82–dc23 LC record available at https://lccn.loc.gov/2021037626

ISBN 978-1-108-48029-1 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> This book is dedicated to crossing barriers, not erecting them

CAMBRIDGE

Contents

	Notat	ion	<i>page</i> xii
	Prefa	ce	xix
	Ackno	owledgements	XX
1	Stabl	e distributions	1
	1.1	One-dimensional stable distributions	1
	1.2	Characteristic exponent of a one-dimensional stable law	4
	1.3	Moments	9
	1.4	Normalised one-dimensional stable distributions	11
	1.5	Distributional identities	13
	1.6	Stable distributions in higher dimensions	20
	1.7	Comments	25
2	Lévy	processes	27
	2.1	Lévy–Itô decomposition	27
	2.2	Killing	30
	2.3	Path variation and asymmetry	31
	2.4	Feller and strong Markov property	34
	2.5	Infinitesimal generator	35
	2.6	Drifting and oscillating	35
	2.7	Moments	36
	2.8	Exponential change of measure	37
	2.9	Donsker-type convergence	39
	2.10	Transience and recurrence	39
	2.11	Duality	41
	2.12	Hitting points	42
	2.13	Regularity of the half-line	44
	2.14	Excursions and the Wiener-Hopf factorisation	44
	2.15	Reflection	48

Cambridge University Press
978-1-108-48029-1 - Stable Lévy Processes via Lamperti-Type Representations
Andreas E. Kyprianou , Juan Carlos Pardo
Frontmatter
More Information

viii		Contents	
	2.16	Creeping	49
	2.17		49
	2.18	Lévy processes in higher dimensions	54
	2.19	Comments	56
3	Stab	le processes	58
	3.1	One-dimensional stable processes	58
	3.2	Normalised one-dimensional stable processes	60
	3.3	Path variation, asymmetry and moments	62
	3.4	Path properties in one dimension	64
	3.5	Wiener-Hopf factorisation and the first passage problem	66
	3.6	Isotropic <i>d</i> -dimensional stable processes	70
	3.7	Resolvent density	72
	3.8	Comments	76
4	Нуре	ergeometric Lévy processes	78
	4.1	β -subordinators	78
	4.2	Hypergeometric processes	81
	4.3	The subclass of Lamperti-stable processes	87
	4.4	The first passage problem	89
	4.5	Exponential functionals	93
	4.6	Distributional densities of exponential functionals	103
	4.7	Distributional tails of exponential functionals	111
	4.8	Comments	113
5	Posit	ive self-similar Markov processes	115
	5.1	The Lamperti transform	115
	5.2	Starting at the origin	117
	5.3	Stable processes killed on entering $(-\infty, 0)$	122
	5.4	Stable processes conditioned to stay positive	128
	5.5	Stable processes conditioned to limit to 0 from above	133
	5.6	Censored stable processes	136
	5.7	The radial part of an isotropic stable process	144
	5.8	Comments	151
6	Spati	ial fluctuations in one dimension	153
	6.1	First exit from an interval	153
	6.2	Hitting points in an interval	160
	6.3	First entrance into a bounded interval	161
	6.4	Point of closest and furthest reach	166
	6.5	First hitting of a two-point set	168
	6.6	First hitting of a point	172
	6.7	First exit for the reflected process	176
	6.8	Comments	181

Cambridge University Press
978-1-108-48029-1 - Stable Lévy Processes via Lamperti-Type Representations
Andreas E. Kyprianou , Juan Carlos Pardo
Frontmatter
More Information

		Contents	ix
7	Done	y-Kuznetsov factorisation and the maximum	183
	7.1	Kuznetsov's factorisation	183
	7.2	Quasi-periodicity	185
	7.3	The Law of the maximum at a finite time	190
	7.4	Doney's factorisation	196
	7.5	Comments	204
8	Asyn	nptotic behaviour for stable processes	206
	8.1	Stable subordinators	206
	8.2	Upper envelopes for $\rho \in (0, 1)$	214
	8.3	Lower envelopes for $\rho \in (0, 1)$	219
	8.4	Comments	226
9	Enve	lopes of positive self-similar Markov processes	227
	9.1	Path decompositions for pssMp	227
	9.2	Lower envelopes	234
	9.3	Upper envelopes	240
	9.4	Comments	250
10	Asyn	nptotic behaviour for path transformations	252
	10.1	More on hypergeometric Lévy processes	252
	10.2	Distributions of pssMp path functionals	260
	10.3	Stable processes conditioned to stay positive	265
	10.4	Stable processes conditioned to limit to 0 from above	272
	10.5	Censored stable processes	275
	10.6	Isotropic stable processes	279
	10.7	Comments	285
11	Marl	kov additive and self-similar Markov processes	286
	11.1	MAPs and the Lamperti-Kiu transform	286
	11.2	Distributional and path properties of MAPs	288
	11.3	Excursion theory for MAPs	292
	11.4	Matrix Wiener–Hopf factorisation	295
	11.5	Self-similar Markov processes in \mathbb{R}^d	300
	11.6	Starting at the origin	303
	11.7	Comments	304
12		e processes as self-similar Markov processes	306
	12.1	Stable processes and their <i>h</i> -transforms as ssMp	306
	12.2	Stable processes conditioned to avoid or hit 0	314
	12.3	One-dimensional Riesz–Bogdan–Żak transform	316
	12.4	First entrance into a bounded interval revisited	318
	12.5	First hitting of a point revisited	322

Cambridge University Press
978-1-108-48029-1 — Stable Lévy Processes via Lamperti-Type Representations
Andreas E. Kyprianou , Juan Carlos Pardo
Frontmatter
More Information

Х	Contents		
	12.6 12.7 12.8	Radial asymptotics for $d \ge 2$	324 328 329
13	Radi	al reflection and the deep factorisation	330
	13.1	Radially reflected stable processes when $\alpha \in (0, 1)$	330
	13.2	Deep inverse factorisation of the stable process	332
	13.3	Ladder MAP matrix potentials	335
	13.4	y y 1	344
	13.5	1 1	348
	13.6	Comments	349
14	Spati	al fluctuations and the unit sphere	351
	14.1	Sphere inversions	351
	14.2	Sphere inversions with reflection	354
	14.3	First hitting of a sphere	355
	14.4	First entrance and exit of a ball	365
	14.5		374
	14.6	Comments	381
15	Appl	ications of radial excursion theory	383
	15.1	Radial excursions	383
	15.2	The Point of closest reach to the origin	389
	15.3	Deep factorisation in <i>d</i> -dimensions	403
	15.4	Radial reflection	406
	15.5	Comments	411
16	Wind	lings and up-crossings of stable processes	412
	16.1	Polar decomposition of planar stable processes	412
	16.2	Windings at infinity	414
	16.3	Windings at the origin	417
	16.4	Upcrossings of one-dimensional stable processes	421
	16.5	Comments	428
Appe	ndix		429
	A.1	Useful results from complex analysis	429
	A.2	Mellin and Laplace–Fourier inversion	430
	A.3	Gamma and beta functions	431
	A.4	Double gamma function	432
	A.5	Double sine function	434
	A.6	Hypergeometric functions	435
	A.7	Additive and subadditive functions	436
	A.8	Random difference equations	437

	Contents	xi
A.9	A generalisation of the Borel–Cantelli Lemma	438
A.10	Skorokhod space	439
A.11	Feller processes	440
A.12	Hunt–Nagasawa duality	441
A.13	Poisson point processes	443
References		446
Index		458

Notation

Below is some of the more commonly used notation that appears throughout the text, which has been thematically grouped for convenience. Reference page numbers are presented in the right-hand column.

Stable distributions

α	stability index	3, 61
ho	positivity index	12, 61
Я	parameter set (α, ρ) for stable distributions	12
$p(x, \alpha, \rho)$	pdf of stable distribution with parameters (α, ρ)	14
M(z)	Mellin transform of $p(x, \alpha, \rho)$	17

Lévy processes

(<i>Y</i> , P)	general Lévy process	27
$(\hat{Y}, \mathbf{P}), (Y, \hat{\mathbf{P}})$	dual of the Lévy process (Y, P)	41
$\Pi(dx)$	Lévy measure	5,28
$\pi(x)$	Lévy density	84
$N(\mathrm{d}t,\mathrm{d}x)$	Poisson point process of jumps	29
L	infinitesimal generator	35
\mathcal{F}_t	natural filtration	34
P_t	semigroup	41
Ψ	characteristic exponent	28,
ψ	Laplace exponent	94
$\overline{Y}_t, \ \underline{Y}_t$	running supremum and running infimum	41
Ψ_q^+, Ψ_q^-	Wiener–Hopf factors	183
H, \hat{H}	ascending and descending ladder height process	46

	Notation	xiii	
5 , Ŝ	lifetime of the ascending and descending lad- der height processes	50, 81	
κ, κ	ascending and descending ladder height Laplace exponents	46	
$U^{(q)}[f]$	<i>q</i> -resolvent	42	
$u^{(q)}$	density of <i>q</i> -resolvent	43	
U	subordinator resolvent	50	
$ au^B$	first passage time of a Lévy process into B	42	
$ au_x^-, au_x^+$	first passage times below and above x	34, 50	
ζ	lifetime of killed process	30	
$\mathcal{E}_t(\beta)$	exponential martingale	37	
\mathfrak{U}, W	variables characterising asymptotic overshoot	53, 233	
	of a Lévy process at first passage over a threshold tending to infinity		
$\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3, \mathcal{H}_4$	parametric classes of hypergeometric Lévy processes	84. 88, 93	
<i>ξ</i> *, Ψ*	Lévy process underlying stable process killed on entering $(-\infty, 0)$ and its characteristic exponent	123	
$\xi^{\uparrow}, \Psi^{\uparrow}$	Lévy process underlying stable process con- ditioned to stay positive and its characteristic exponent	131, 132	
$\xi^{\downarrow}, \Psi^{\downarrow}$	Lévy process underlying stable process con- ditioned to limit to 0 from above and its characteristic exponent	135, 135	
$\widetilde{\xi}_t, \widetilde{\Psi}$	Lévy process underlying censored stable pro- cess and its characteristic exponent	137, 143	
ξ, Ψ	Lévy process underlying the radial part of a stable process and its characteristic exponent	145, 147	
η	a constant defined from the hypergeometric Lévy process parameters, equal to $1 - \beta + \gamma + \hat{\beta} + \hat{\gamma}$	84	
$\hat{ heta}$	Cramér number	94	
$I(\delta, Y)$	integrated exponential functional of Y	93	
X	shorthand for $1/\delta$	94	
p(x)	pdf of $I(\delta, Y)$	104, 105	
M(s)	Mellin transform of $I(\delta, Y)$	94	
Stable Processes			
(X,\mathbb{P})	stable process	58	
(11, 2) Я	parameter set (α, ρ) for stable processes	61	

xiv	Notation	
\mathcal{A}^+	parametric set (α, ρ) for stable processes with pos- itive jumps	214
$\mathbf{p}_t(x)$	density of the stable process issued from 0	60, 361
X	radial distance from the origin	144
X_t^*	running maximum of absolute value	216
\mathbb{P}^{\uparrow}	law of the stable process conditioned to stay posi- tive	129
\mathbb{P}^{\downarrow}	law of the stable process conditioned to limit to 0 from above	133
\mathbb{P}°	stable process conditioned to approach 0 continu- ously (for $\alpha < d$) or conditioned to avoid the origin (for $d < \alpha$)	308, 314
U^A, u^A	resolvent up to exiting the interval A and its density	157, 165
$U^A_{\{z\}}, \ u^A_{\{z\}}$	resolvent up to exiting the interval $A \setminus \{z\}$ and its density	161, 320
\mathbf{R}_{t}	process reflected in its infimum	176
γ_a	first passage time over threshold γ_a of reflected process	177
\bar{R}_t	running supremum of reflected process	179
J_t	future infimum of stable process	240
$p_{\overline{X}}(x)$	pdf of the maximum at time 1	194
$\mathcal{M}(x)$	Mellin transform of the maximum at time 1	192
$\eta(t)$	time change in Riesz–Bogdan–Żak transformation	316, 324
G(∞)	time of closest radial reach to the origin	386
\overline{m}	time of furthest radial reach from the origin before	340
_0	hitting the origin	255
$ au_a^{\odot}$	first hitting of the sphere of radius <i>a</i>	355
$\mathtt{D}_a = \mathbf{\sigma}^\oplus$	last passage time of radial distance below a	419 365
$ au_a^\oplus au_a^\ominus$	first entry into the sphere of radius <i>a</i>	
	first exit from the sphere of radius <i>a</i>	365
$\theta_t, \ \theta_{[a,b]}$	winding numbers of planar stable processes	413
$\mathbf{U}_t, \ \mathbf{U}_{[a,b]}$	upcrossings of one-dimensional stable processes	422

Markov additive processes

E	state space of modulator	287, 300
(ξ, J)	MAP with discrete Markov modulator	287
(ξ, Θ)	MAP with general Markov modulator (usually a	300
	\mathbb{S}^{d-1} -valued modulator)	
\mathcal{G}_t	MAP filtration	300

	Notation	xv
$\mathbf{P}_{x,i}$	law of MAP with discrete modulator	287
$\mathbf{P}_{x,\theta}$	law of MAP with continuous modulator	300
Q	intensity matrix of the discrete modulator	289
G	matrix of Laplace transforms of inter-modulator	289
	jumps	
π	stationary distribution of Q	289
Δ_π	diagonal matrix populated with π	290
$\Psi, \hat{\Psi}$	matrix exponent of MAP and MAP dual	289, 290
\overline{m}_t	time at which the MAP ordinate last visits its past	295
	maximum before time t	
(H^+,J^+)	ascending ladder MAP	293
$\kappa(\gamma,\lambda)$	matrix of exponent of space-time ascending ladder	294
	MAP	
$\Phi_i(\gamma,\lambda)$	space-time Laplace exponents of pure subordinator	294
	states of ascending ladder MAP	
$\chi(z), v(z)$	eigenvalue and right eigenvector of matrix expo-	291
	nent of $\Psi(z)$	
$\kappa(\lambda)$	matrix exponent of the ascending ladder MAP	299
$U_{i,j}(x)$	ascending and descending ladder MAP resolvent	335
	for discrete modulator	
$\mathbf{R}_{z}[f](\theta)$	MAP resolvent	403
$\boldsymbol{\rho}_{z}[f](\theta),$	ascending and descending ladder MAP resolvent	403
$\hat{\boldsymbol{ ho}}_{z}[f](heta)$	for continuous modulator	

Self-similar Markov processes

I_t and I_∞	integrated exponential Lévy process underlying a	116
	self-similar Markov process	
$\varphi(t)$	right inverse of integrated exponential Lévy pro-	116
	cess	
(Z, P)	self-similar Markov process	116, 227
ζ	lifetime of process	115
(Ξ, \mathbf{P})	Lévy process underlying a positive self-similar	116, 227
	Markov process	
D_x	last passage time below x	120
\overleftarrow{Z}_t	time reversed process from last passage time	228
\overleftarrow{S}_y	first passage time below y of reversed pssMp	228
S_{y}	first passage time of pssMp above y	249
Γ_1	left limit of positive self-similar Markov process at	229
	last passage at level x_1	

Cambridge University Press
978-1-108-48029-1 — Stable Lévy Processes via Lamperti-Type Representations
Andreas E. Kyprianou , Juan Carlos Pardo
Frontmatter
More Information

xvi	Notation	
J _t	future infimum of pssMp after time <i>t</i>	240
Ŷ	scaled left limit of positive self-similar	240
	Markov process at last passage at any level	
$ ilde{p}$	density of distribution of $\Upsilon^{\delta} I(\delta, \Xi)$	255
F, F_q	right tail distribution of integrated expo-	234
	nential and partially integrated exponential	
_	dual Lévy process	
\overline{F}_{Υ}	left tail distribution of $\Upsilon^{\alpha} \hat{I}_{\infty}$	241
G	left tail distribution of S_1 under P_0	248
	Excursions	
Ιρ	local time	11 179 292
L, l	local time	44, 178, 383
ϵ_t	canonical excursion at local time t	45, 178
$\epsilon_t \ (\epsilon, J^\epsilon), \ (\epsilon, \Theta^\epsilon)$	canonical excursion at local time tcanonical radial excursion at local time t	45, 178 294, 384
$\epsilon_t \ (\epsilon, J^\epsilon), \ (\epsilon, \Theta^\epsilon)$	 canonical excursion at local time t canonical radial excursion at local time t excursion lifetime 	45, 178 294, 384 45
ϵ_t	canonical excursion at local time tcanonical radial excursion at local time t	45, 178 294, 384
$\epsilon_t \ (\epsilon, J^\epsilon), \ (\epsilon, \Theta^\epsilon)$	 canonical excursion at local time t canonical radial excursion at local time t excursion lifetime space of excursion paths of Lévy processes 	45, 178 294, 384 45
$egin{aligned} \epsilon_t \ (\epsilon, J^\epsilon), \ (\epsilon, \Theta^\epsilon) \ rac{\zeta}{\mathcal{U}}(\mathbb{R}), \ \underline{\mathcal{U}}(\mathbb{R}) \end{aligned}$	 canonical excursion at local time t canonical radial excursion at local time t excursion lifetime space of excursion paths of Lévy processes from maximum and minimum 	45, 178 294, 384 45 45
$egin{aligned} \epsilon_t \ (\epsilon, J^\epsilon), \ (\epsilon, \Theta^\epsilon) \ rac{\zeta}{\mathcal{U}}(\mathbb{R}), \ \underline{\mathcal{U}}(\mathbb{R}) \end{aligned}$	 canonical excursion at local time t canonical radial excursion at local time t excursion lifetime space of excursion paths of Lévy processes from maximum and minimum space of MAP excursions from ordinate 	45, 178 294, 384 45 45
$\begin{aligned} & \frac{\epsilon_t}{(\epsilon, J^{\epsilon})}, \ (\epsilon, \Theta^{\epsilon}) \\ & \frac{\zeta}{\mathcal{U}}(\mathbb{R}), \ \underline{\mathcal{U}}(\mathbb{R}) \\ & \overline{\mathcal{U}}(\mathbb{R} \times E) \end{aligned}$	 canonical excursion at local time t canonical radial excursion at local time t excursion lifetime space of excursion paths of Lévy processes from maximum and minimum space of MAP excursions from ordinate maximum 	45, 178 294, 384 45 45 294
$\begin{aligned} & \frac{\epsilon_t}{(\epsilon, J^{\epsilon})}, \ (\epsilon, \Theta^{\epsilon}) \\ & \frac{\zeta}{\mathcal{U}}(\mathbb{R}), \ \underline{\mathcal{U}}(\mathbb{R}) \\ & \overline{\mathcal{U}}(\mathbb{R} \times E) \end{aligned}$	 canonical excursion at local time t canonical radial excursion at local time t excursion lifetime space of excursion paths of Lévy processes from maximum and minimum space of MAP excursions from ordinate maximum space of MAP excursions from ordinate 	45, 178 294, 384 45 45 294
$\begin{aligned} & \frac{\epsilon_t}{(\epsilon, J^{\epsilon})}, \ (\epsilon, \Theta^{\epsilon} \\ & \frac{\zeta}{\mathcal{U}}(\mathbb{R}), \ \underline{\mathcal{U}}(\mathbb{R}) \\ & \overline{\mathcal{U}}(\mathbb{R} \times E) \\ & \underline{\mathcal{U}}(\mathbb{R} \times \mathbb{S}^{d-1}) \end{aligned}$	 canonical excursion at local time t canonical radial excursion at local time t excursion lifetime space of excursion paths of Lévy processes from maximum and minimum space of MAP excursions from ordinate maximum space of MAP excursions from ordinate minimum 	45, 178 294, 384 45 45 294 385
$\begin{aligned} & \frac{\epsilon_t}{(\epsilon, J^{\epsilon})}, \ (\epsilon, \Theta^{\epsilon} \\ & \frac{\zeta}{\mathcal{U}}(\mathbb{R}), \ \underline{\mathcal{U}}(\mathbb{R}) \\ & \overline{\mathcal{U}}(\mathbb{R} \times E) \\ & \underline{\mathcal{U}}(\mathbb{R} \times \mathbb{S}^{d-1}) \end{aligned}$	 canonical excursion at local time t canonical radial excursion at local time t excursion lifetime space of excursion paths of Lévy processes from maximum and minimum space of MAP excursions from ordinate maximum space of MAP excursions from ordinate minimum excursion measure of a Lévy process from 	45, 178 294, 384 45 45 294 385
$\begin{aligned} & \frac{\epsilon_{t}}{(\epsilon, J^{\epsilon})}, \ (\epsilon, \Theta^{\epsilon}) \\ & \frac{\zeta}{\mathcal{U}}(\mathbb{R}), \ \underline{\mathcal{U}}(\mathbb{R}) \\ & \overline{\mathcal{U}}(\mathbb{R} \times E) \\ & \underline{\mathcal{U}}(\mathbb{R} \times \mathbb{S}^{d-1}) \\ & \overline{n} \text{ resp. } \underline{n} \end{aligned}$	 canonical excursion at local time t canonical radial excursion at local time t excursion lifetime space of excursion paths of Lévy processes from maximum and minimum space of MAP excursions from ordinate maximum space of MAP excursions from ordinate minimum excursion measure of a Lévy process from its maximum resp. minimum 	45, 178 294, 384 45 45 294 385 45, 177

Other notation

point begins with modulator in state θ

\mathbf{e}_q	independent and exponentially distributed	30
	random variable	
$\Gamma(z)$	gamma function	431
$_{2}F_{1}(a,b;c;z)$	hypergeometric function	435
$G(z; \tau)$	double gamma function	95, 432
$S_2(z;\tau)$	double sine function	185

Notation xvii F(s)special function derived from double 96 gamma functions C_0, C_∞ families of positive increasing functions 241, 248 with growth at 0 and ∞ , respectively $\mathbb{S}^{d-1}(b,r)$ sphere in \mathbb{R}^d of radius *r*, centred at *b* 352 surface measure on $\mathbb{S}^{d-1}(0, a)$ normalised $\sigma_a(dz)$ 356 to have unit mass spatial inversion through unit sphere K(x)324 (Kelvin transform) x^*, x^\diamond non-centred sphere inversion and non-352, 354 centred sphere inversion with reflection

CAMBRIDGE

Preface

There have been a number of developments in the theory of α -stable Lévy processes in recent years. This is largely thanks to a better understanding of their connection to self-similar Markov processes in conjunction with a revised view on the complex analysis that can subsequently be brought into play. We mention in this respect the paper of Caballero and Chaumont [43] as well as the work of Kuznetsov [115, 116], both of which present seminal perspectives in terms of the underlying Wiener–Hopf theory that has stimulated a large base of literature. Among this literature, the PhD theses of Alex Watson in 2013 and Weerapat Satitkanitkul in 2018 stand out.

The basic idea of this book is to give an introductory account of these developments and, accordingly, expose the new techniques that have appeared in the literature since the mid-2000s. The majority of the mathematical computations that are developed in the following chapters pertain either to recent material or to a new approach for classical results. At the end of each chapter, a section is devoted to referencing all material presented in the main body of the chapter. An appendix is also included, and referred to throughout the text, to record some of the more specialist facts from complex analysis, special functions and the theory of Markov processes that are used in the text.

We hope that this text will serve as a standard reference for those interested in the modern theory of α -stable Lévy processes as well as suitable material for a graduate course. Indeed, some of the material in this text has been used in conjunction with lectures given by AEK at the University of Zurich, the National Technical University of Athens, University of Jyväskylä, The Chinese Academy of Sciences and at Prob-L@B in Bath, as well as by JCP at UNAM in Mexico City, CIMAT in Guanajuato and Kyoto University.

Andreas E. Kyprianou Bath, UK Juan Carlos Pardo Guanajuato, Mexico

xix

Acknowledgements

We were inspired to write this text by our mutual friend and collaborator Alexey Kuznetsov, many of whose contributions to the theory of stable processes can be found in this book. During the writing of this book JCP and AEK were in receipt of a Royal Society Advanced Newton International Fellowship, JCP was in receipt of supporting CONACYT grant 250590 and AEK in receipt of supporting EPSRC grants EP/M001784/1 and EP/L002442/1, as well as a Royal Society Wolfson Merit Award. Both authors are grateful for this support, some of which assisted with visits between the UK and Mexico. JCP would especially like to thank the University of Bath for hosting him as David Parkin Visiting Professor for the 2018/19 academic year.

In the final stages of writing, we sent a draft of the manuscript to several people who agreed to act as proofreaders. Predictably, we obtained a shameful amount of corrections. We are immeasurably grateful to the following people in equal measure: Larbi Alili, Sam Baguley, Jean Bertoin, Gabriel Berzunza, Natalia Cardona, Hector Chang, Loic Chaumont, Benjamin Dadoun, Niklas Dexheimer, Ron Doney, Dorottya Fekete, Diana Gillooly, Camilo González, Emma Horton, Sara Klein, Takis Konstantopoulos, Alexey Kuznetsov, Sandra Palau, Helmut Pitters, Tsogzolmaa Saizmaa, Weerapat (Pite) Satitkanitkul, Quan Shi, Lukas Trottner, Stavros Vakeroudis, Matija Vidmar, Alex Watson, Philip Weißmann. The last months of writing took place during the 2020-2021 pandemic lockdown period and we learned the robustness of virtual communication as needs dictated.

Finally, and most importantly, we would like to thank our families for their understanding and patience during the writing of this text.