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294
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294
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291
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335
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403
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116
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116
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116, 227
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(ǫ, Jǫ), (ǫ,Θǫ) canonical radial excursion at local time t 294, 384

ζ excursion lifetime 45
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45
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294
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385
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45, 177
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294
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384
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30

Γ(z) gamma function 431
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241, 248
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Preface

There have been a number of developments in the theory of α-stable Lévy

processes in recent years. This is largely thanks to a better understanding of

their connection to self-similar Markov processes in conjunction with a revised

view on the complex analysis that can subsequently be brought into play. We

mention in this respect the paper of Caballero and Chaumont [43] as well as

the work of Kuznetsov [115, 116], both of which present seminal perspectives

in terms of the underlying Wiener–Hopf theory that has stimulated a large base

of literature. Among this literature, the PhD theses of Alex Watson in 2013 and

Weerapat Satitkanitkul in 2018 stand out.

The basic idea of this book is to give an introductory account of these devel-

opments and, accordingly, expose the new techniques that have appeared in the

literature since the mid-2000s. The majority of the mathematical computations

that are developed in the following chapters pertain either to recent material or

to a new approach for classical results. At the end of each chapter, a section is

devoted to referencing all material presented in the main body of the chapter.

An appendix is also included, and referred to throughout the text, to record

some of the more specialist facts from complex analysis, special functions and

the theory of Markov processes that are used in the text.

We hope that this text will serve as a standard reference for those interested

in the modern theory of α-stable Lévy processes as well as suitable material

for a graduate course. Indeed, some of the material in this text has been used

in conjunction with lectures given by AEK at the University of Zurich, the

National Technical University of Athens, University of Jyväskylä, The Chinese

Academy of Sciences and at Prob-L@B in Bath, as well as by JCP at UNAM

in Mexico City, CIMAT in Guanajuato and Kyoto University.

Andreas E. Kyprianou Juan Carlos Pardo

Bath, UK Guanajuato, Mexico

xix
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