

PERFUSION CELL CULTURE PROCESSES FOR BIOPHARMACEUTICALS

Master the design and operation of perfusion cell cultures with this authoritative reference. Discover the current state of the art in the design and operation of continuous bioreactors, with emphasis on mammalian cell cultures for producing therapeutic proteins. Topics include the current market for recombinant therapeutic proteins, current industry challenges, and the potential contribution of continuous manufacturing. The volume provides coverage of every step of process development and reactor operation, including small-scale screening to lab-scale and scale-up to manufacturing scale. Illustrated through real-life case studies, this is a perfect resource for groups active in the cell culture field, as well as graduate students in areas such as chemical engineering, biotechnology, chemistry, and biology, and to those in the pharmaceutical industry, particularly biopharma, biotechnology, and food or agro industry.

Moritz Wolf is a postdoctoral fellow at ETH Zürich in the department of Chemistry and Applied Biosciences.

Jean-Marc Bielser is an associate manager in the Biopharma Technology and Innovation group at Merck Serono SA (Switzerland). He obtained his master's degree in chemical engineering and biotechnology from EPFL, and the degree of Doctor of Science from ETH Zürich.

Massimo Morbidelli is Professor Emeritus in the Department of Chemistry and Applied Biosciences at ETH Zürich and Professor at the Department of Chemistry, Materials and Chemical Engineering at the Politecnico di Milano. Member of the Italian Academy of Sciences (Accademia dei Lincei), he received the Excellence in Process Development Research Award in 2017 from the American Institute of Chemical Engineers, the 2018 Separations Science and Technology Award from the American Chemical Society, and the 2019 Award in Integrated Continuous Biomanufacturing. He is the coauthor of *Continuous Biopharmaceutical Processes* (Cambridge University Press, 2018) and *Parametric Sensitivity in Chemical Systems* (Cambridge University Press, 2005).

CAMBRIDGE SERIES IN CHEMICAL ENGINEERING

Series Editor

Arvind Varma, Purdue University

Editorial Board

Juan de Pablo, University of Chicago Michael Doherty, University of California-Santa Barbara Ignacio Grossman, Carnegie Mellon University Jim Yang Lee, National University of Singapore Antonios Mikos, Rice University

Books in the Series

Baldea and Daoutidis, Dynamics and Nonlinear Control of Integrated Process Systems

Chamberlin, Radioactive Aerosols

Chau, Process Control: A First Course with MATLAB

Cussler, Diffusion: Mass Transfer in Fluid Systems, Third Edition

Cussler and Moggridge, Chemical Product Design, Second Edition

De Pablo and Schieber, Molecular Engineering Thermodynamics

Deen, Introduction to Chemical Engineering Fluid Mechanics

Denn, Chemical Engineering: An Introduction

Denn, Polymer Melt Processing: Foundations in Fluid Mechanics and Heat Transfer

Dorfman and Daoutidis, Numerical Methods with Chemical Engineering Applications

Duncan and Reimer, Chemical Engineering Design and Analysis: An Introduction 2E

Fan, Chemical Looping Partial Oxidation Gasification, Reforming, and Chemical Syntheses

Fan and Zhu, Principles of Gas-Solid Flows

Fox, Computational Models for Turbulent Reacting Flows

Franses, Thermodynamics with Chemical Engineering Applications

Leal, Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes

Lim and Shin, Fed-Batch Cultures: Principles and Applications of Semi-Batch Bioreactors

Litster, Design and Processing of Particulate Products

Marchisio and Fox, Computational Models for Polydisperse Particulate and Multiphase Systems

Mewis and Wagner, Colloidal Suspension Rheology

Morbidelli, Gavriilidis, and Varma, Catalyst Design: Optimal Distribution of Catalyst in Pellets, Reactors, and Membranes

Nicoud, Chromatographic Processes

Noble and Terry, Principles of Chemical Separations with Environmental Applications

Orbey and Sandler, Modeling Vapor-Liquid Equilibria: Cubic Equations of State and their Mixing Rules

Pfister, Nicoud, and Morbidelli, Continuous Biopharmaceutical Processes: Chromatography, Bioconjugation, and Protein Stability

Petyluk, Distillation Theory and its Applications to Optimal Design of Separation Units

Ramkrishna and Song, Cybernetic Modeling for Bioreaction Engineering

Rao and Nott, An Introduction to Granular Flow

Russell, Robinson, and Wagner, Mass and Heat Transfer: Analysis of Mass Contactors and Heat Exchangers

Schobert, Chemistry of Fossil Fuels and Biofuels

Shell, Thermodynamics and Statistical Mechanics

Sirkar, Separation of Molecules, Macromolecules and Particles: Principles, Phenomena and Processes

Slattery, Advanced Transport Phenomena

Varma, Morbidelli, and Wu, Parametric Sensitivity in Chemical Systems

Wolf, Bielser, and Morbidelli, Perfusion Cell Culture Processes for Biopharmaceuticals

> Perfusion Cell Culture Processes for Biopharmaceuticals

Process Development, Design, and Scale-Up

Moritz Wolf

ETH Zürich

Jean-Marc Bielser

Merck Serono SA ETH Zürich

Massimo Morbidelli

Politecnico di Milano ETH Zürich

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781108480031

DOI: 10.1017/9781108847209

© Moritz Wolf, Jean-Marc Bielser, and Massimo Morbidelli 2020

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2020

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging in Publication data

Names: Wolf, Moritz, author. | Bielser, Jean-Marc, author. | Morbidelli, Massimo, author.

Title: Perfusion cell culture processes for biopharmaceuticals: process development, design, and scale-up / Moritz Wolf, Jean-Marc Bielser, Massimo Morbidelli.

Other titles: Cambridge series in chemical engineering.

Description: New York, NY: Cambridge University Press, 2020. | Series: Cambridge series in chemical engineering | Includes bibliographical references and index.

Identifiers: LCCN 2020000228 (print) | LCCN 2020000229 (ebook) | ISBN 9781108480031 (hardback) | ISBN 9781108847209 (epub)

Subjects: MESH: Batch Cell Culture Techniques | Perfusion-methods | Bioreactors | Biological Products-chemistry | Models, Chemical

Classification: LCC RM301.25 (print) | LCC RM301.25 (ebook) | NLM QS 525 | DDC 615.1/9-dc23

LC record available at https://lccn.loc.gov/2020000228 LC ebook record available at https://lccn.loc.gov/2020000229

ISBN 978-1-108-48003-1 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

The Author alone is responsible for the views expressed in this publication, and they do not necessarily represent the views, decisions, or policies of the Merck Group. This publication has been independently developed by the Author without any contribution by the Merck Group.

Contents

	List of Abbreviations				
	List	of Symbols	xii		
ı	Perfusion Mammalian Cell Culture for Recombinant				
	Pro	tein Manufacturing	1		
	1.1	Biotechnology: From Early Applications to Biotherapeutics	1		
	1.2		9		
	1.3	Development and Operation of Perfusion Cultivations	13		
	1.4	Conclusion	19		
2	Perfusion Bioreactors: The Set-Up and Process Characterisation 20				
	2.1	Challenges and Objectives in Perfusion Culture Operation	20		
	2.2	Equipment	23		
		Perfusion-Specific Control Variables: P, VCD and CSPR	28		
		Control	30		
	2.5	Media for Perfusion Cell Cultures	34		
	2.6	Steady-State Operation and Process Dynamics	39		
	2.7	Conclusion	45		
3	Scale-Down Models and Sensors for Process Development 46				
	3.1	Perfusion Cell Culture at Different Scales	46		
	3.2	Nanofluidic Chips	47		
	3.3	Incubated Devices As Scale-Down Models	48		
	3.4	Wavebags	52		
	3.5	Bioreactors	53		
	3.6	Sensors	58		
	3.7	Conclusion	66		
4	Design and Optimisation of Mammalian Cell Perfusion Cultures				
	4 . I	Principles of Optimal Perfusion Bioreactor Design	67		
	4.2	Development of a Commercial Perfusion Culture	74		
	4.3	Part 1: Clone and Media Screening for Perfusion Processes	75		
	4.4	Part 2: Perfusion Cell Culture Development	79		
	4.5	Product Quality Attributes: Considerations on Their Control	93		
	4.6	Part 3: Scale-Up to clinical and Commercial Reactors	97		
	4.7	Conclusion	98		

vii

Contents

5	Cli	100	
	5. I	Scale-Up Challenges and Future Perspectives	100
	5.2	Scale-Up of Stirred Bioreactors	103
	5.3	Hydrodynamic Stress	111
	5.4	Computational Fluid Dynamics	115
	5.5	Characterisation of the Bioreactor: Case Studies	116
	5.6	Cell Retention at Large Scale	120
	5.7	Process Intensification	127
	5.8	Single-Use Technology	132
	5.9	Economical Drivers	134
	5.10	137	
6	Me	138	
	6. l	Role of Mathematical Models in Upstream Processes	138
	6.2	Modelling of Chemical Systems	139
	6.3	Modelling of Biological Systems	141
	6.4	Bioreactor Operation Modes	143
	6.5	Mechanistic Models and Their Implementation	149
	6.6	Statistical and Hybrid Modelling	161
	6.7	Hybrid Modelling Approach	170
	6.8	Advanced Process Monitoring and Control	171
	6.9	Conclusion	173
	Refe	erences	174
	Inda	nv.	100

Abbreviations

ATF alternating tangential flow
ATP adenosine triphosphate

BPOG Biophorum Operations Group

BR benchtop bioreactor

CCC critical coagulation concentration

CD chemically defined
CFB concentrated fed-batch
CFD computational fluid dynamics
CGI chemical growth inhibitor

CMP-Neu5Ac cytidine diphosphate N-acethyneuraminic acid

COG cost of goods

CPP critical process parameter CQA critical quality attributes

CSPR_{min} minimum cell-specific perfusion rate

CSPR cell-specific perfusion rate CSTR continuous stirred tank reactor

DNA deoxyribonucleic acid DO dissolved oxygen DWP deepwell plate

EGI environmental growth inhibitor

ER endoplasmic reticulum ESS explained variance

Fc fragment crystallisable region **FDA** Food and Drug Administration **FucT** $\alpha - 1,6$ fucosyltransferase G0no galactose molecule attached G1 one galactose molecule attached G2 two galactose molecules attached **GalT** $\beta - 1$, 4 Galactosyltransferase **GDP-Fuc** guanosine diphosphate fucose

 $\begin{array}{ll} \textbf{GnTI} & \alpha-1, 3 \text{ N-acetylglucosaminyl transferase I} \\ \textbf{GnTII} & \alpha-1, 6 \text{ N-acetylglucosaminyl transferase II} \\ \end{array}$

HMW high molecular weight
HS high seeding fed-batch
IgG immunoglobulin G
IPC in-process control

ix

Cambridge University Press

978-1-108-48003-1 — Perfusion Cell Culture Processes for Biopharmaceuticals

Moritz Wolf, Jean-Marc Bielser, Massimo Morbidelli

Frontmatter

More Information

List of Abbreviations

LCA life-cycle assessment
LMW low molecular weight
LS low seeding fed-batch

LV latent variable

mAb monoclonal antibody

MALDI-TOF matrix assisted laser desorption ionisation – time of flight

MAN Mannose

MCSGP multicolumn countercurrent solvent gradient purification

MIR mid-infrared
MS mass spectroscopy
msBR micro-scale bioreactor
MVDA multivariate data analysis
NIH National Institure of Health

NIPALS non-linear iterative partial least square

NIR near infrared NPV net present value

NS nucleotide activated sugar
NTP nucleotide triphosphate

OS oligosaccharide OTR oxygen transfer rate

PAT process analytical technology
PCA principle component analysis
PDE partial differential equation

PF perfusion

PFR plug flow reactor

PID proportional integral derivative

PLS partial least square

PTM post-translational modification PMMA poly(methyl methacrylate)

QbD quality by design

relRMSEP relative root mean square error in prediction
REMSECV root mean square error in cross-validation
RMSEP root mean square error in prediction

ROS radical oxydative species

RT Rushton turbine

RTD residence time distribution

RV reactor volume

SCADA supervisory control and data acquisition

SialT $\alpha - 1, 6$ sialyltransferase

ST shake tube

STD standard deviation

SVDsingle value decompositionTCAtricarboxylic acid cycleTFFtangential flow filtration

List of Abbreviations

TMP transmembrane pressure

TSS total variance U uridine

UDP-Gal uridine diphosphate galactose

UDP-GlcNAc uridine diphosphate N-acetylglucosamine

UFDF ultrafiltration diafilatration

UV ultraviolet VCD viable cell density

VCD_{max} maximum viable cell density VVD vessel volume per day

Symbols

 $(\bar{\epsilon}_T)_q$ Average gasing energy dissipation rate, $W \times m^{-3}$ $(\bar{\epsilon}_T)_{Iq}$ Average stirring energy dissipation rate, $W \times m^{-3}$ $(\bar{\epsilon}_T)_S$ Specific energy dissipation rate, $W \times m^{-3}$ $\bar{\epsilon}_T$ ΔC Distance between two impellers, m Gas driving force, $mol \times L^{-1}$ ΔC_{Gas} Diagonal matrix of the non-zero singular values, – Δ Model estimation of the y-value of the ith observation, – $\hat{y}_{test,i}$ λ Eigenvalue, -Cell growth rate, d^{-1} μ_d^{max} Maximum cell death rate, d^{-1} Cell death rate, d^{-1} μ_d Dynamic viscosity, $kg \times m^{-1} \times s^{-1}$ μ_L Cell lysis rate, d^{-1} μ_{l} Maximum cell growth rate, s^{-1} μ_{max} Width of the concentration profile of E_i , – ω_i Width of the concentration profile of TP_k , – ω_k Width of the specific productivity as a function of pH, – $\omega_{q,mAb}$ Liquid density, $kg \times m^{-3}$ ρ_L Liquid surface tension, $N \times m^{-1}$ σ_L Average residence time, s τ Maximum tolerable stress, $N \times m^2$ τ_{max} Average residence time in the cell retention device, s τ_{Sep} θ_m Characteristic mixing time, s Bioreactor cross section, m ANumber of principal components, -AGas-liquid interfacial area per unit dispersion volume, m^{-1} aBBleed rate, $L \times d^{-1}$ BPLS regression coefficient, – CWeights of matrix Y, – C_{Gas}^* Saturated gas concentration, $mol \times L^{-1}$ $\begin{array}{c} C_{O_2}^* \\ c_i^0 \end{array}$ Oxygen concentration at saturation in liquid phase, mg/L, ppmInitial molar concentration of species i, $mol \times L^{-1}$

Gas concentration in the reactor, $mol \times L^{-1}$

Molar concentration of species i, $mol \times L^{-1}$

Protein concentration in the harvest stream, $g \times L^{-1}$

Oxygen concentration in liquid phase, mg/L, ppm

Average total energy dissipation rate, $W \times m^{-3}$

xii

 C_{Gas}

 c_i C_{O_2}

 $C_{Harvest}$

List of Symbols

C_P	Protein concentration, $g_{Protein} \times d^{-1}$
$C_{Reactor}$	Protein concentration in the reactor, $g \times L^{-1}$
D	Impeller diameter, m
d	Cell diameter, μm
D_i	Golgi diameter, μm
E^{i}	Residual matrix of the X space, –
	Residence time distribution, s
E(t)	
E_j^{\dots}	Peak concentration of glycosyltransferase j , $mol \times L^{-1}$
$E_{j}^{max} \ E_{j} \ F$	Glycosyltransferase j , –
F'	Residual matrix of the Y space, –
f_{\perp}	Frequency, s^{-1}
$_{F_{i}^{in}}^{f}$	Molar flowrate of species i entering the bioreactor, $mol \times d^{-1}$
f_{inh}	Term indicating inhibation, –
F_i	Molar flowrate of species i leaving the bioreactor, $mol \times d^{-1}$
f_{lim}	Term indicating nutrient limitation, –
$F_{T,k}$	Flowrate of sugar precursors into the Golgi, $mol \times s^{-1}$
$G^{1,\kappa}$	Residual matrix of the regression model, –
g	Acceleration of gravity, $m^2 \times s^{-1}$
G_i	Rate of production of species $i, mol \times d^{-1}$
H	Bioreactor height, m
H_L	Filling height of the cell culture broth, m
	Concentration of growth inhibitor n , $mol \times L^{-1}$
I_n	,
k	Reaction rate constant, $mol \times L^{-1} \times s^{-1}$
$K_{UDP-Gal,Gal}^{Gal}$	Equilibrium constant of the UDP-Gal equilibrium, $mol \times L^{-1}$
$k_{f,j}^{max} \ K_{NS,k}^{MS}$	Maximum turnover rate of a specific reaction, s^{-1}
$K_{NS,k}^{MS}$	Equilibrium constant describing the equilibrium between
1.2,10	monosaccharide in the medium and in the cytosol, $mol \times L^{-1}$
$K_{\mu,AMM}$	Ammonia growth inhibition constant, $mol \times L^{-1}$
$K_{d,AMM}$	Ammonia death inducing constant, $mol \times L^{-1}$
$K_{d,i}$	Dissociation constant of the specific donor-enzyme complex,
$n_{d,i}$	$mol imes L^{-1}$
$K_{d,Mn^{2+}}$	Dissociation constant of the specific manganese-enzyme complex,
$M_{d,Mn^{2+}}$	$mol \times L^{-1}$
V	
$K_{d,Nk}$	Dissociation constant of the nucleotide-enzyme complex,
7	$mol imes L^{-1}$
$k_{f,j}$	Turnover rate constant, s^{-1}
k_L	Gas-liquid mass transfer coefficient, $m \times s^{-1}$
$k_L a$	Volumetric mass transfer coefficient, s^{-1}
K_n	Monod constant, $kg \times L^{-1}$
$k_{T,k}$	Transport turnover rate, s^{-1}
M	Measured torque on the impeller shaft, $n \times m$
M	Number of variables constituting the data matrix X , –
m_{AMM}	Ammonia-maintenance-related coefficient, $mol \times d^{-1}$
$m_{NS,k}$	Nucleotide-sugar-maintenance-related coefficient, $mol \times d^{-1}$
$m_{UDP-Gal}$	UDP-Gal maintenance coefficient, $mol \times d^{-1}$
MC	Medium consumption, $L_{Medium} \times g_{Protein}$
MS_k	Concentration of monosaccharide in the medium, mol
N	Agitation speed, s^{-1}
± 1	1 151 milest opood, 0

xiii

More Information

Cambridge University Press 978-1-108-48003-1 — Perfusion Cell Culture Processes for Biopharmaceuticals Moritz Wolf , Jean-Marc Bielser , Massimo Morbidelli Frontmatter

List of Symbols

NNumber of observations of the data matrix X, – N_A^{Golgi} Ammonia-associated Golgi constant, $mol \times L^{-1}$ N_C Number of species, - N_i Number of moles of species i, mol N_k Nucleotide k, – N_R Number of reactions, -NRNumber of enzymatic reactions, – NS_k Nucleotide sugar k, – OS_i Oligosaccharide i, -PPerfusion rate, d^{-1} PPower input, W P_0 Power number, -Loading vector corresponding to the ath principal component, – p_a Gaseous power dissipation, W Element of loading matrix P corresponding to ath principal $p_{m,a}$ component and mth variable, pK_A^{Golgi} Apparent pK_A value of the Golgi, – PRVolumetric productivity, $g_{Protein} \times L_{Reactor} \times d^{-1}$ Volumetric flowrate, $L \times d^{-1}$ Q \tilde{Q}^2 Relative variance explained in cross validation, – Bleed volumetric flowrate, $L \times d^{-1}$ Q_B Volumetric gas flowrate, $L \times min^{-1}$ Q_q Harvest volumetric flowrate, $L \times d^{-1}$ Q_H Q_{in} Volumetric flowrate of nutrient feed addition, $L \times d^{-1}$ Specific production rate of species i, $mol \times L^{-1} \times d^{-1}$ Cell-specific productivity of monoclonal antibody, q_{mAb} $g_{mAb} \times cell^{-1} \times d^{-1}$ Volumetric flowrate of nutrient removal, $L \times d^{-1}$ Q_{out} Perfusion volumetric flowrate of nutrient addition, $L \times d^{-1}$ Q_P Cell-specific productivity, $g_{Protein} \times cell^{-1} \times d^{-1}$ q_p Overal rate of reaction, $mol \times L^{-1} \times d^{-1}$ RRate of production of species i, $mol \times L^{-1} \times d^{-1}$ r_i R_i Rate of the reaction j, $mol \times L^{-1} \times d^{-1}$ ReReynolds number, – Re_{imp} Reynolds impeller number, -SCovariance matrix, -TX-scores, -TBioreactor diameter, m Score vector corresponding to the ath principal component, – t_a TP_k^{max} Peak concentration of the transport protein k, $mol \times L^{-1}$ TP_k Transport protein k, – UY-scores, -UMatrix of the left singular vector, – VMatrix of the right singular vector, –

xiv

 V_{Bleed}

 $V_{Exchange}$

 $V_{Harvest}$

 $v_{i,j}$

Bleed volume, L

Exchange volume, L

Stoichiometric coefficient of species i in reaction j, –

Harvest volume, L

List of Symbols

Stoichiometric coefficient of species i, – v_i

Incorporation rate of a nucleotide sugar, $mol \times s^{-1}$ $v_{NS,k}$

Reactor volume, L V_R

Volume of separation device, L V_{Sen} Gas superficial velocity, $m \times s^{-1}$ V_S

 V_{tot} Total volume, L

 W^* Adjusted weights of matrix X, –

XData matrix, -

Dead cell density, $10^6 \ cells \times mL^{-1}$ X_d Lysed cell density, $10^6 \ cells \times mL^{-1}$ X_1 Vector of x observation of mth variable, – x_m Measured cell density, $10^6 \ cells \times mL^{-1}$ $X_{V,meas}$ Cell density set-point, $10^6 \ cells \times mL^{-1}$ $X_{V,SP}$ Cell density target, $10^6 \ cells \times mL^{-1}$ Cell density, $10^6 \ cells \times mL^{-1}$ $X_{V,target}$

 X_V

YYield, %

Ammonia-growth-dependent yield coefficient, $1 \times mol^{-1}$ $Y_{\mu,AMM}$ Nucleotide-sugar-growth-dependent yield coefficient, $1 \times mol^{-1}$ $Y_{NS,k}$

 $y_{test,i} \\ z_j^{max} \\ z_k^{max}$ y-value of the ith observation in the external set, – Localisation of the peak concentration of E_i , – Localisation of the peak concentration of TP_k , –

CO₂ Carbon dioxyde H₂O Dihydrogen monoxyde

 HCO_3 Bicarbonate ion Potassium K Na Sodium

NaHCO₃ Sodium bicarbonate

Dioxygen O_2 OH-Hydroxyde ion