

More Information

50-state 100 percent WWS roadmaps (see State roadmaps) 100.org 366 100 Percent movement xiii, xv, 347, 360, 366, 369-371 100 Percent network 366-367, 369 Absorption of radiation (see Radiation, Absorption) Acid rain 348 Aerosol, defined 9 Aerosol particles (see Air pollution, Particles) Agricultural burning 1 (see also Biomass burning) Air conditioning 38, 310 Aircraft Battery-electric (see Battery-electric vehicles, Aircraft) Difficulty in transitioning 382 Hydrogen fuel cell (see Hydrogen fuel cell vehicles, Aircraft) Long-haul 350 Short-haul 350 Timeline to transition to 100 percent WWS 376 Air density 206 Variation with height 206 Airfoil (see Wind turbine, Forces acting on airfoil)

Airfoil (see Wind turbine, Forces acting Air mass coefficient 166 Air pollution xiii, 1, 13 Computer model 350 Cost xiv, 1, 106, 333

Equation for 287

Health (social) cost of air pollution 106, 128, 278

Non-health cost of air pollution 287

Death rate 1, 89, 278, 287–288, 293–294, 365–366

By country 289-291, 294

Due to ozone, particulate matter, and cancer 294-295

Equation for (see Health effects equation)

Natural gas 89

Gases 1-2

Greenhouse gases (see Greenhouse gases)

Global warming impacts on 11

Health effects 1-2

Asthma (see Asthma)

Cancer

Bronchus 288

Lung (see Lung cancer)Uranium mining 118

Trachea 288

Chronic obstructive pulmonary disease (COPD) 278, 288

Chronic bronchitis (see Bronchitis, Chronic)

Emphysema (see Emphysema)

Heart disease (see Heart disease)

Lower respiratory tract infection (see Lower respiratory tract

infection)Bronchitis (see Bronchitis)

Flu (see Flu)

Pneumonia (see Pneumonia)

Morbidity 287 Stroke (see Stroke)

Particles 1

Absorption by 9

Aerosol 9

Anthropogenic 2

Cooling due to 4

Defined 9

Natural 2

Warming due to 4

Solution to 30

Sources 1

Air pressure 206

Standard sea level 206

Belts

Equatorial low-pressure belt 227 Subpolar low-pressure belts 229 Subtropical high-pressure belts 229

Systems

Aleutian low-pressure system 233 Icelandic low-pressure system 233 Pacific high-pressure system 233

Variation with height 206

Air-source heat pump (see Heat pump, Air source)

Alkaline water electrolyzer (see Hydrogen, Electrolyzer, Alkaline water)

Albedo (see Radiation, Albedo)

Alex, Ken 366

All-of-the-above (AOTA) solution 382

Altamont Pass wind farm 194

Alternating current (see Electric, Current, Alternating)Frequency

141

Alternator 149-150

Aluminum ion batteries (see Battery, Aluminum ion)

Amazon 373-374

Amines 128

Ammonia 79, 122, 128 Ampere, Andre-Marie 147

Force law 147 Amperes 140

More Information

Index

409

Anaerobic 78 Lithium ion 29, 55-57 Ancillary services 320 Nickel cadmium 29 Load following, 320 (see also Power plant, Load following) Pack 54 Frequency regulation 321 Saltwater 57 Regulation 320 Separator 55 Spinning, supplemental, and replacement reserves 321 Sodium sulfur 57 Voltage control 152, 321 Stationary 54, 72, 74 Anderson, Chris 353 Voltaic cell 54 Anemometer 259 (see also Wind Turbine, Parts, Anemometer) Battery-electric vehicles 28, 56, 252 Angular frequency 149 Aircraft 35, 37 Anion 32, 55 Batteries (see Battery) Annealing 44 Chargers 74 Comparison with hydrogen fuel cell vehicles 28, 34-35, 37, 123, Anode 31-32, 42, 54 Anthropogenic 253, 257 Comparison with internal combustion vehicles 35, 37, 123, 252–253 Defined xiii, 2 Heat (see Emissions, Heat) Component of 100 percent WWS roadmaps 252, 301 Particles (see Air pollution, Particles, Anthropogenic) Defined 28 Water vapor (see Emissions, Water vapor) Military 37 Anticyclone (see Wind, Anticyclonic flow) Passenger vehicles 72 Apparent power 152 Policies for 384 Apple 373-374 Regenerative braking 29 Arakawa, Akio, 351 Becquerel, Antoine Henri 118 Arc Furnace, electric 42-43 Betz, Albert 208 Component of energy roadmaps 252, 302 Betz Archer, Cristina 352 Law 208 Aryl group 128 Limit 200, 208-209 Aspdin, Joseph 47 Biden, Joe 368 Asthma 1, 278, 288 Biodiesel 122 Astronomical unit 181 Algae 122 Soy 122 Aurora Australis 180 Bioenergy (see biomass)With carbon capture and storage or use (BECCS/U) 120-121 Borealis 180 Azimuth angle 182 Issues with BECCS/U 121-122 Negative carbon emissions 121 Band gap energy 160-161 Biofuel burning 1 Wavelength (see Wavelength, Band gap) Heat emissions (see Emissions, Heat) Band gap materials Lifecycle emissions (see Emissions, Lifecycle) Direct 161 Opportunity cost emissions (see Emissions, Opportunity cost) Indirect 161 Water vapor emissions (see Emissions, Water vapor) Bands (see Energy bands) Biofuels 120 Barth, Jannette 357 Gaseous 120 Baseload power plant (see Power plant, Baseload) Liquid 120, 122 Air pollution from 123-124 Basic oxygen furnace 45-46 Biodiesel (see Biodiesel) Battery Aluminum ion 57 Butanol (see Butanol) Carbon dioxide equivalent emissions from 123-124 Charging 55 Cost 316, 332 Competition with food use 123 Current collector 54 Ethanol (see Ethanol) Defined 54 Emissions 123 Discharging Electrode 54 For transportation 122 Flow (redox) 57 Land requirements 123 Vanadium 57 Water requirements 123 Galvanic cell 54 Graphite dual ion 57 Biomass for electricity production 120 Lead acid 29 Agricultural residues 120

410

Index

Biomass for electricity production (cont.) Contaminated wastes 120	California energy roadmap 360, 366 Eligible renewables (see Eligible renewables, California)
Emissions from 120	Impacts of 366
Heat 120 (see also Emissions, Heat)	SB 100 (see SB100, California senate bill)
Lifecycle 120 (see also Emissions, Lifecycle)	Cancer unit risk estimates (CUREs) 295
Opportunity cost (see Emissions, Opportunity cost)	Capacitor 146, 152
Water vapor (see Emissions, Water vapor)	Capacitance 146
Energy crops 120	Capacity
Forestry residues 120	Installed 24
Industry residues 120	Nameplate 18, 24
Land requirements 121	By generator, needed to power the world 271
Park and garden wastes 120	Oversizing (see Oversizing nameplate capacity)
Biomass burning 1, 4–5, 77	Capacity factor
Agricultural burning 77	Concentrated solar power (see Concentrated solar power,
Emissions from 77	Capacity factor)
Solution to 78	Range for different energy technologies 274
Wildfires 2, 11	Wind turbine (see Wind turbine, Capacity factor)
Black carbon 3–4, 9, 351	Cap and trade 383
Absorption by 4, 9	Capital cost, upfront 273–274, 328, 332, 334, 338
Controlling black carbon may be fastest method of slowing global	Capital recovery factor 273
warming 351	Carbon arc lamp 42
Global warming contribution 3–4	Carbon capture
Second leading cause of global warming 3–4, 351–352	Air pollution impacts 91
Black, Joseph 125	And Storage 12, 85, 91
Blackbody radiation (see Radiation, Blackbody)	Carbon dioxide leaks to air 101
Black lung disease 13 Blast furnace 45	And Use 12, 85, 91
	Enhanced oil recovery 91
Blyth, Prof. James 194	Bioenergy (see Bioenergy, Carbon capture and storage or use)
Boiler 59	Climate impacts 91
Boiling water reactor (see Nuclear reactor, Boiling water	Comparison of CO ₂ removal with other methods of reducing CO
reactor)	102–104
Boltzmann, Ludwig 178	Projects 103
Borehole storage (see Storage, Thermal, Underground, Borehole)	Boundary Dam power station project 103
Boundary Dam power station 103	Parish coal (Petra Nova) power plant 103–104, 106–109
Boundary layer 5	Carbon dioxide 3–4
Brand, Stewart 353–354	Change in atmospheric levels upon conversion to WWS
Breeder reactor (see Nuclear, Breeder reactor)	377–378
Bridge fuel (see Natural gas, Bridge fuel)	Lifetime, e-folding 97, 378
Bronchitis 278	Mixing ratios 377–378
Chronic 278	Carbon dioxide equivalent emissions 8, 92, 106–108, 353
Brown carbon 4, 9	Biomass 120
Absorption by 4	Coal 87–88, 92, 108
Global warming contribution 3-4	With carbon capture 92, 95, 104
Brown, Jerry 366	Concentrated solar power (CSP) 95
Brune, Michael 360	Direct air capture 126, 129
Brush, Charles F. 194	Ethanol 123–124
Bush, George W. 352	Geothermal electricity 95
Reasons pulling the U.S. out of the Kyoto Protocol 352	Hydroelectricity 95
Business-as-usual (BAU) scenario 41, 249, 272-274, 278-279,	Opportunity cost emissions (see Emissions, Opportunity cost)
293–294, 296, 314, 328, 332–335, 338, 341, 376	Natural gas 86-88, 92
Butanol 122	With carbon capture 92, 95
	Solar PV electricity 95
Calcium carbonate 125 (see also limestone)	Tidal electricity 95
Calcium hydroxide 125	Wave electricity 95
Calicchia, Marcia 355	Wind electricity 95

With versus without carbon capture 103-104, 106

More Information

Index

411

Timeline to transition to 100 percent WWS 375 Nuclear 114 Carbon monoxide 3, 5 Community Choice Aggregation (CCA) utility 76, 372 Carbon or pollution tax 383 Marin Clean Energy 372 Revenue-neutral 382 Companies Committed to 100 percent WWS 373-375 Cation 32, 55 Cathode 31-33, 42, 44, 55-57 Apple (see Apple) Cavendish, Henry 29 Facebook (see Facebook) Cellulosic ethanol (see Ethanol, Cellulosic) Google (see Google) Centralized power plant (see Power plant, Centralized) RE100 (see RE100) Centrifuge (see Uranium, Enrichment, Centrifuge) Committed to transitioning vehicle fleets 373 Chain saw, electric 50 Comparison of energy technologies 353 Charge carriers (see Electric, Current, Charge carriers) Compressed air storage (see Storage, Compressed air) Chernobyl (see Nuclear Power, Risks, Meltdown, Chernobyl) Concentrated solar power (CSP) 27 Capacity factor 52 Chiller 60, 61, 70 Chlorofluorocarbons (see Halogens, Halocarbons, Central tower receiver 27 Component of 100 percent WWS roadmaps 252, 302, 376 Chlorofluorocarbons) Chronic obstructive pulmonary disease (COPD) (see Air pollution, Construction time 274 Health effects, Chronic obstructive pulmonary disease) Cooling, air and water 28 Circuit, electric (see Electric, Circuit) Cost 274 Cities Lifecycle emissions (see Emissions, Lifecycle) Legislation requiring 100 percent WWS for electricity 362, 363, Opportunity cost emissions (see Emissions, Opportunity cost) 364, 373 Parabolic dish 28 Parabolic trough 27 Sierra Club campaign (see Sierra Club, Cities campaign) WWS roadmaps for 360 Steam production from 45, 302 Climate change (see Global warming)Belief in 371 Storage 51-52 Climate model 350-351 Cost 316 Clinton, Hillary 369 Fluid (molten salt) 27 Phase change material 51 Coal Tank 27, 51 Air pollution impacts 88 Capacity factor 274 Thermal efficiency 52 Climate impacts 87-88 Water vapor (see Emissions, Water vapor) Construction time 274 Concrete 47 Cost 274 Aggregate 47 Emission factors 87, 91 Carbon dioxide emissions from 47, 377 Global warming potential 87 Cement 47 Heat emissions (see Emissions, Heat) Clinker 47 Impacts on birds and bats 244 Ferrock (see Ferrock) Industrial heat fuel 42 Manufacturing 47 Lifecycle emissions (see Emissions, Lifecycle) Portland cement 47 Opportunity cost emissions (see Emissions, Opportunity cost) Recycling 48 Planning-to-operation time 95 Sequestering CO₂ in 47 Primary versus end-use energy 250 Conductance, Electrical 143, 159, 160 Supercritical pulverized coal plant (see Supercritical pulverized Effective conductance of parallel resistors 145 coal plant) Conduction 20, 40, 41, 44, 48, 60, 62, 67, 69, 72, 75, 140, 159 Water vapor emissions (see Emissions, Water vapor) Conduction band (see Energy bands, Conduction) Coal gasification (see Hydrogen, Production synthetic, Coal Conductor 159 Conference of the parties 21 (COP 21) 368 gasification) Coefficient of performance (See Heat pump, Coefficient of Conti, Prince Piero 21 Cooktop performance) Cold demand 51, 308, 310, 312-314 Electric induction 48, 74, 302 Cold storage (see Storage, Cold) Components of a 100 percent WWS system 252 Combined cycle gas turbine 86-87 Electric resistance 48 Combustion xiii, 348 Natural gas 48 Command-and-control policy 383 Cooling degree days (CDDs) 308-309, 313

Commercial sector 251

412

Index

Corn ethanol (see Ethanol, corn)	Demand
Cost	Cold demand (see Cold demand)
Air pollution cost of energy (see Air Pollution, Cost)	End-use energy (see End-use energy)Annual average (see End-use
Business (private) cost of energy xv, 272, 279-280,	energy, Annual average)
282, 284	Electricity demand (see Electricity, Demand)
Aggregate annual	Energy demand 249
Business-as-usual (BAU) 328, 333, 335	Flexible 303, 311, 313-314, 317
Wind-water-solar (WWS) 328, 333, 335	Heat demand (see Heat, Demand)
Ratio, WWS-to-BAU 333, 338	Hydrogen demand (see Hydrogen, Demand)
Per unit energy 334–335	Inflexible 303, 311, 313–314, 317
Capital cost (see Capital cost, upfront)	Matching with supply (see Grid stability)
Climate cost of energy (See Social cost of, Carbon)	Peak 307
Electricity cost per unit energy in island countries 334	Power, annual average 250-251, 260, 265-266, 268, 270-271
Externality cost of energy 272, 279–280, 282, 284, 335	By WWS generator type, worldwide 271
Health cost of energy (see Air Pollution, Cost)	Business-as-usual (BAU) 251
Levelized cost of energy (LCOE) (see also Levelized cost of	Wind-Water-Solar (WWS) 251, 338
energy)	Reduction due to WWS 252
Business as usual (BAU) 278–280, 282, 284	Variation of demand in time 307, 313, 334
Wind-water-solar (WWS) 278-280, 282, 284, 332	Demand response management 43, 76, 302, 311
In 24 world regions encompassing 143 countries 332, 334	Democratic party platform, 371
Operation and maintenance (O&M) cost (see Operation and	Denaturant 122
maintenance cost)	DiCaprio, Leonardo 356, 360, 368, 369
Social cost of	Before the Flood 368
Air pollution (see Air pollution, Cost, Health cost of air	Dielectric heater 44, 252
pollution)	Microwave heating 44
Carbon (see Social cost of, Carbon)	Radio frequency heating 44
Energy (see Social cost of, Energy)Aggregate annual	Dielectric material 44
Business-as-usual (BAU) 328, 333, 335	Dielectric insulator 145
Wind-water-solar (WWS) 328, 333, 335	Diffraction (see Radiation, Diffraction)
Ratio, WWS-to-BAU 328, 333–334	Diode
Per unit energy 333, 335	Blocking 168
WWS-to-BAU social cost per unit energy ratio 333, 338	Bypass 168
Coulombs 140	p-n junction 163
Countries	Zero-biased 163
100 percent WWS roadmaps for 354, 368, 371	Dipoles 145
139 country roadmaps 368–369, 371	Direct air capture and storage or use
143-country roadmaps 326–328, 371	Natural (NDACCS/U) 124–125
United States roadmap 354	Synthetic (SDACCS/U) 85, 124–125
Country legislation requiring 100 percent WWS for electricity	Cost 129–130
360, 362, 371	Opportunity cost of 128
Countries that have reached 100 percent WWS electric power	Social cost 128–129
300–301	Emissions comparison with no capture 126, 129
Cuomo, Andrew 354–355, 359	Reaction with Earth metal oxides and hydroxides 127
Current (see Electric, Current)	Reaction with limewater 127
Current-voltage curve (see Photovoltaic, Solar, Current-voltage	Direct current (see Electric, Current, Direct)
curve)	Discount rate 273
Curtailment (shedding) 216	Private 273, 277
Cyclone (see wind, cyclonic flow)	Social 275, 277
Cyclone (see wind, cyclonic now)	For intergenerational projects 275
Davy, Sir Humphrey 43	Distributed power plant (See Power Plant, Distributed)
Davy, 311 Humphrey 43 Darrieus, Georges Jean Marie 195	Distributed power plant (see Fower Flant, Distributed) Distribution (see Transmission and distribution)
Wind turbine (see Wind turbine, Types, Darrieus)	Distribution (see Transmission and distribution) District cooling 38, 59, 60, 61, 301, 302, 311
Declination angle 170, 171, 173	District cooling 38, 59, 60, 61, 301, 302, 311 District heating 38, 59, 60–65, 70, 249, 301, 302, 311
Declining clock auction 383	Advantage 39
Delucchi, Mark 353–355, 359	Disadvantage 39
- eracerri, 171411K 222 222, 227	10 10 10 11 11 11 11 1 1 1 1 1 1 1 1 1

More Information

Cambridge University Press 978-1-108-47980-6 — 100% Clean, Renewable Energy and Storage for Everything Mark Z Jacobson Index

Index

First generation 61	Reactive (see Reactive power)
Fourth generation 61	Real (see Real power)
Stanford Energy System Innovations 61	Electricity
Second generation 61	Alternating current (AC) (see Electric, Current, Alternating)
Third generation 61	Cost 76
Water tanks 59	Savings due to WWS 76
Drake Landing Solar Community 62-63	Current (See Electric, Current)
Drift velocity 141	Defined 139
Dryer, electric heat pump 252	Demand 51, 75-76, 308
Ductless mini-split heat pump (see Heat pump, Ductless mini-split)	Direct current (DC) (see Electric, Current, Direct)
Dvorak, Mike 352, 355	Price 76
	Off peak 76
Earth	Partial peak 76
Earth-sun distance 181	Peak 76
Variation with day of year 181	Sector 250–251
cliptic plane 170	Types
Equilibrium temperature 3	Lightning (see Lightning)
Hour angle 170, 171, 173	Static 139
Perihelion 171	Wired 140
Rotation rate 224	Electrode (see Battery, electrode)
Tilt 170	Electrolysis (see Hydrogen, Production synthetic,
Eddies 204	Electrolysis)
Edison, Thomas 154	Electrolyte 31
Efficiency, energy 50-51, 302, 384	Nafion 32
Incentives for 382	Solution 55
Measures 384	Electrolyzer (see Hydrogen, Electrolyzer)
Plug-to-wheel (see Plug-to-wheel efficiency)	Electromagnetic wave 177
Tank-to-wheel (see Tank-to-wheel efficiency)	Electromagnetism 147
Electrical insulator 143	Electromotive force (emf) 147
Electric	Electron
Charge 140	Hole 160
Circuit 140–142, 149	Valence 159
Current 139–140	Electron beam heater 44, 302
Alternating (AC) 25, 141, 149-150, 154	Electron gun 44
High voltage (HVAC) 154-155, 212-213, 302	Electricity-to-fuel ratio 252, 254, 257
Single-phase 151	Eligible renewables, California 366
Flickering 151	Emissions
Three-phase 151	Aerosol 4
Charge carriers 139	Coal 89, 92
Direct (DC) 25, 141, 149, 154, 159, 302	Due to covering land 102
Line losses 155	Future scenarios 378
High voltage (HVDC) 154-155, 212-213	Greenhouse gases 4
World's first HVDC line 155	Heat 4, 10, 94–95, 97
Direction of 140–141	Lifecycle, carbon dioxide equivalent (CO ₂ e) 87-88, 91-92, 95,
Root-mean-square 149	111–112, 114, 120, 124
Ferry 30	Opportunity cost 93–95
Field 161	For WWS and conventional technologies 95
Field Potential 142	Natural gas 89, 92
Home 71	Non-energy xiv, 77
Lawnmower (see Lawnmower, Electric)	Biomass burning (see Biomass burning)
Leaf blower (see Leaf blower, Electric)	Halogen emissions (see Halogens)
Load 143	Methane from agriculture and waste (see Methane, Agriculture
Resistance 143	and waste)
Power 143	Nitrous oxide (see Nitrous oxide)
Apparent (see Apparent power)	Waste burning (see Waste burning)

<u>More Information</u>

414

Index

Emissions (cont.)	Cellulosic 122, 124
Water vapor 4, 95, 98-99	Corn 122, 124
Reduction due to wind turbines 99	E85 122, 124
Emissivity (see Radiation, Emissivity)	E100 122
Emphysema 278	Land requirements 123
End-use energy 249–252, 254, 299, 376	Sugarcane 122
Annual average 251, 314, 336	Water requirements 123
Reduction due to	•
All processes 251, 258, 376	Facebook 356, 374
Efficiency of electricity over combustion for transportation	Ferrock 47
251–254, 256, 376	Faraday, Michael 147
Efficiency of electricity over combustion for industry 251-252,	Faraday's law of electromagnetic induction 148–149
254, 257, 376	Fast reactor (see Nuclear reactor, Fast reactor)
Efficiency of using heat pumps 251-252, 254, 257, 376	Feed-in tariffs 382
Eliminating energy for mining, transporting, processing fossil	Ferrell cell 227
fuels 251–252, 258, 376	Ferrell, William 227
Efficiency improvements beyond BAU 251-252, 258, 376	Fissile element 110
Energy bands 160	Fireplace, electric 48, 302
Conduction 159, 160	Fixed air 125
Forbidden 159, 160	Flow (redox) batteries (see Battery, Flow)
Valence 159, 160	Flow rate (see Hydropower, Flow rate)
Energy density 37, 56	Flu 278
Energy efficiency (see Efficiency, Energy)	Flywheel (see Storage, Flywheel)
Energy insecurity 11	Forbidden band (see Energy bands, Forbidden)
Due to harmful byproducts of energy use 13	Fossil fuels xiii
Due to centralized power plants 11	Fox, Josh 354–356, 359, 361
Due to limited fossil fuels 11	Gasland (see Gasland)
Due to reliance on far-away energy 12	Gasland Part II (see Gasland Part II)
Energy	Fracking (see Hydraulic Fracturing)
Density 55	Frequency 149
End use (see End-use energy)	AC electric power grid 141, 155, 200
Gravitational potential 10, 99	Regulation (see Ancillary services, Frequency regulation)
Internal 99	Frew, Bethany 354
Kinetic 10, 99	Front
Primary (see Primary energy)	Polar 229
Power density 55	Subtropical 229
Round-trip efficiency Sectors xiii, 56	Fuel cell 32
Sectors	Efficiency (see Hydrogen fuel cell, efficiency)
Agriculture/forestry/fishing 251, 252	How it works 32–33
Building heating/cooling 251, 252	Hydrogen (see Hydrogen fuel cell)
Commercial (see Commercial sector)	Stack (see Hydrogen fuel cell, Stack)
Residential (see Residential sector) Electricity (see Electricity, Sector)	Fuel rods (see Uranium, Fuel rods) Fukushima (see Nuclear Power, Risks, Meltdown, Fukushima)
	Future value 277
Industrial (see Industrial sector) Military, 251, 252	ruture value 2//
•	Calvani I vici 54
Transportation (see Transportation sector)	Galvani, Luigi 54
Storage (see Storage, Energy)	Galvanic cell (see Battery, Galvanic cell)
Energy insecurity xiii	Galvanometer 147
Energy use reduction 50–51	Gas constant
Enrichment (see Uranium, Enrichment)	Dry air 206, 394
Equation of state 206	Moist air 206, 394
Equitable transition 366, 375	Universal 393
Ethanol 122	Gases (see Air pollution, Gases)
Air pollution mortality from 123	Gasland 354
Carbon dioxide equivalent emissions from 123–124	Gasland Part II 361

More Information

Index

415

Gas silvestre 125 (see also carbon dioxide) Halogens (see Halogens) Gearbox 18 Methane (see Methane) Generator, electricity 20-29, 51-54, 58, 59, 151-153 Nitrous oxide (see Nitrous oxide) AC Asynchronous 198 Ozone (see Ozone) AC Synchronous 151, 198 Water vapor (see water vapor) Green building standards 50 Three-phase 151 Green New Deal viii, 373 DC (Dynamos) 198 Hydropower (see Hydropower, Generator) Grid stability 52, 299-300, 317 Induction 198 Bundling renewables to help meet demand 353 Permanent magnet 198-199 Countries at 100 percent WWS with grid stability 300-301, Squirrel cage 198, 200 Wound field 198-199 Examples of 306 Rotor 198 Literature on 322-323 Measures when grid stability not achievable 318 Stator 199 Modeled for 143 countries in 24 world regions 326-328, 371 Wind turbine (see Wind Turbine, Parts, Generator) Geoengineering 85, 131 Characteristics of storage in some regions 329 Solar radiation management 131 Models simulating Problems with 131-132 Optimization model 324 Power flow or load flow model 324 Geothermal electricity and heat Components of 100 percent WWS roadmaps 252, 302, 376 Trial-and-error simulation model 325 Electricity 20 LOADMATCH 326 Binary plant 21 Overbuilding transmission to help meet demand 318 Capacity factor 274 Solution when demand exceeds supply 317 Solution when supply exceeds demand 317 Construction time 274 Cost 274 Steps for reaching 301, 303-304, 306-308 Dry steam plant 21 Vehicle-to-grid for grid stability (see Vehicle-to-grid) Flash steam plant 21 Weather forecasting to improve grid stability (see Weather Jobs for construction and operation 341 forecasting for grid stability) Gross domestic product (GDP) per capita 293 Lifecycle emissions (see Emissions, Lifecycle) Purchasing power parity (PPP) 292 Opportunity cost emissions (see Emissions, Opportunity cost) Water vapor (see Emissions, Water vapor) Gross head (see Hydropower, Gross head) Energy 20 Ground cover 168 Heat 20, 60 Area (see Photovoltaic, Solar, Ground cover area) Geysers Resort Hotel 21 Ratio (see Photovoltaic, Solar, Ground cover ratio) Gillibrand, Kirsten 357 Ground-source heat pump (see Heat pump, Ground source) Global positioning satellite 245 Global warming, anthropogenic xiii, 2-3, 348 Hadley, George 227 Defined 3 Hadley cells 227, 229 Effects of 100 percent WWS on 377 Halladay, Daniel 193 Causes 3, 348 Halogens 3-5, 79 Impacts xiii, 11 Halocarbons 5 Chlorofluorcarbons (CFCs) 6 Observed 3 Global warming potential (GWP) 6-7, 9, 87, 92 Halons 6 Coal 87-88 Perfluorocarbons 6 Halogens 79 Hydrofluorocarbons 6 Natural gas 87-88 Halocarbons (see Halogens, Halocarbons) Google 356, 357, 373-375 Halons (see Halogens, Halocarbons, Halons) Graphite dual ion batteries (see Battery, Graphite dual ion) Harper's Ferry 25 Gravitational potential energy (see Energy, gravitational potential) Health effects of air pollution (see Air pollution, Health Gravity 10, 19, 24, 54, 59, 99, 142, 197, 224, 393 effects) Great Pacific Garbage Patch 78 Heart disease 1, 278, 288, 295 Green bank 359 Head, water 24 Greenhouse effect, natural 3 Gross (see Hydropower, Gross head) Net (See Hydropower, Net head) Greenhouse gases 2, 4, 9 Carbon dioxide (see Carbon dioxide) Health effects equation 287, 293

416

Index

Heat	Hydraulic fracturing (fracking or hydrofracturing) 86, 354
Demand 51, 308, 312-314	Ban in New York 359
High-temperature heat 51, 310	From shale 86
Low-temperature heat 51, 310	Hydrofluorocarbons (see Halogens, Halocarbons,
Industrial (see Industrial heat)	Hydrofluorocarbons)
Latent 10	Hydrogen 29
Sensible 10	Compressed 70
Storage (see Storage, Thermal)	Density 70
Heat exchanger 60	Compressor 123
Heat flux, anthropogenic 10	Cost 332
Heating	Cryogenic 35–36, 70
Air 38, 308-309	Density 35, 70
District (see District heating)	Demand 51, 308, 314
Water 38, 308–309	Electrolyzer 31, 123
Heating degree days (HDDs) 308-309, 313	Alkaline water 31
Heat pump	Polymer electrolyte membrane (PEM) 31
Air conditioning from 39	Solid oxide 31
Cooling from 60	From landfill gas 79, 121
Coefficient of performance 41, 257	Gas 29
Component of energy roadmaps 252, 257, 301	Higher heating value 33
Ductless mini-split 39–40, 50, 74	Leakage 256
Efficiency versus temperature 40	Liquid (see Hydrogen, Cryogenic)
Electricity-to-fuel ratio 257	Lower heating value 33, 35, 287
Heating from 40	Molecular weight 29
Steam from 45, 302	Production, natural 29
Types	Production, synthetic
Air source 39, 70	Coal gasification 31
Ground source 39	Electrolysis 31
Water source 39	Steam reforming 31, 121
Water heater 40–41, 74	Storage (see Storage, Hydrogen)
Heron of Alexandria 193	Hydrogen direct reduction (see Steel Manufacturing, Hydrogen
Higher heating value 33	direct reduction)
Hydrogen (see Hydrogen, Higher heating value)	Hydrogen evolution reaction 32
High voltage 154, 155	Hydrogen fuel cell 32–33
Alternating current (HVAC) (see Electric, Current, Alternating,	Alkaline 32
High voltage)	Efficiency 33, 256
Direct current (HVDC) (see Electric, Current, Direct, High	Maximum 33
voltage)	Molten carbonate 32
Hindenburg 29	Proton exchange membrane (PEM) 32
Hochschild, David 366	Solid oxide 32
Hope, Sarah Shanley 360 Horse latitudes 229	Stack 33, 35
	Hydrogen fuel cell vehicles 28–29, 33–35, 123, 252
Hoste, Graeme 353–354	Advantages 34 Aircraft 35–36, 38
Howarth, Robert 88, 355, 359	
Hurlbut, Brandon 368	Comparison with battery-electric vehicles 34–35, 37, 123, 253,
Hurricanes	257
Global warming impacts on xiv, xv, 11	Comparison with internal-combustion vehicles 34–35, 37, 123,
Storm surge 241	253
Wind turbine impacts on 240	Cost comparison 286
Explanation of impacts 242	Component of 100 percent WWS roadmaps 252,
Hurricane wind speed 241, 243	301
Hurricane storm surge 241	Efficiency losses 123
Isaac 241–242	Military 35, 37
Katrina 241–242	Plug-to-wheel efficiency (see Plug-to-wheel efficiency, Hydroger
Sandy 241–242	fuel cell vehicle)

Mark Z Jacobson

Index

More Information

Index

Hardwan arran 21	In queffee Anthony 255 250
Hydropower 21	Ingraffea, Anthony 355, 359
Capacity factor 274	Installed capacity (see Capacity, Installed)
Charge rate 316	Insulator 159
Component of 100 percent WWS roadmaps 252, 302, 376	Interconnecting
Construction time 274	Transmission 304–305, 318
Cost 274	Wind and wave farms 305
Conventional 21	Wind farms 304–305, 352
Flow rate, volumetric 24	Wind-water-solar farms 306, 318
Efficiency 24	Intermittency 200, 300, 334
Generator 22	Internal combustion engine (ICE) vehicle 28, 252
Gross head 24	Inversion, temperature 5, 205
Installed capacity (see Capacity, Installed)	Nocturnal 205
Jobs for construction and operation 341	Radiation 205
Lifecycle emissions (see Emissions, Lifecycle)	Intertropical convergence zone (ITCZ) 229
Nameplate capacity (see Capacity, Nameplate)	Iron ore 45
Net head 24	Isobar 224
Opportunity cost emissions (see Emissions, Opportunity	- 1
cost)	Jobs
Output 24	Construction jobs 339, 341
Peak discharge rate 316, 329	Created due to WWS 338, 340-341
Penstock 22–24, 53, 54	Direct jobs 338
Powerhouse 22	Full-time equivalent job 339
Primary versus end-use energy 250	Indirect jobs 338
Run-of-the-river 21	Induced jobs 339
Sluice gate 22	JEDI jobs models 338
Storage 53, 302, 316, 329	Lost due to WWS 338, 340-341, 379
Capacity 316	Net jobs due to WWS 341
Three Gorges Dam 21	Operations jobs 339, 341
Turbine 23	Johansson, Scarlett 356
Uprating 23	Joule (unit of energy) 18
Water vapor emissions (see Emissions, Water vapor)	
	Kerry, John 357, 369
Ice storage (see Storage, Thermal, Ice)	Ki-moon, Ban 369
Incinerator 78	Kinetic energy (see Energy, Kinetic)
Inductance 149	Kirchoff, Gustav 142
Induction	Kirchoff's laws
Cooktop, electric (see Cooktop, Electric induction)	Current law 142
Furnace, electric 43, 252, 302	Voltage law 142
Inductors 149, 152	Krapels, Marco, 354-356, 357, 361, 366, 368, 373
Industrial heat 42	Kyoto Protocol 351–352
Arc furnace (see Arc furnace, electric)	
Dielectric heater (see Dielectric heater)	La Cour, Paul 194
Direct heating 42	Landfill 79
Electricity-based heating 42	Landfill gas 79, 121
Electron beam heater (see Electron beam heater)	Land requirements
Fuel-based heating 42	Footprint 89-90, 337-339, 353
Indirect heating 42	Fossil fuel 90
Induction furnace (see Induction, Furnace, electric)	Solar PV and CSP 338-339
Policies incentivizing a transition to 100 percent WWS 384	Wind farm 218, 338-339
Resistance furnace (see Resistance furnace, Electric)	Spacing 89-90, 337-339, 353
Steam-based heating 42	Solar PV and CSP 338-339
Timeline to transition to 100 percent WWS 376	Wind farm 218-221, 338
Industrial Revolution 4, 85	Latent heat (see Heat, Latent)
Industrial sector 251	Lawnmower, electric 49, 302
Infographic roadmaps 356-357, 368, 369-371	Lead 119

Cambridge University Press

978-1-108-47980-6 — 100% Clean, Renewable Energy and Storage for Everything

Mark Z Jacobson

Index

More Information

418

Index

Leaf blower, electric 49, 302 LED lights 75, 302 Lessons for life 349

Letterman, David 361, 361 Late Show with 360–361

1: 1 (LCOP)

Levelized cost of energy (LCOE) 114, 272-276,

296

Lifetime

E-folding, of atmospheric chemicals 6–7, 378 Power plants (see Power plant, Lifetime)

Light-emitting diode (LED) 161

Lightning 2, 139–140
Dart leader 140
Plasma 140
Return stroke 140
Stepped leader 140
Streamer 140

Light water reactor (see Nuclear reactor, Light water reactor)

Lifecycle emissions (see Emissions, Lifecycle) Limestone 45 (see also Calcium carbonate) Limewater (see calcium hydroxide)

Lithium 29, 55

Thunder 140

Battery (see Battery, Lithium)

Mining 29 Resources 29, 56

Load

Annual average (see Demand, Power, annual average)

Defined 23

Cold load (see Cold demand)

Electricity load (see Electricity, Demand)

End-use (see Demand, end-use) Heat load (see Heat, Demand)

Hydrogen load (see Hydrogen, Demand)

Load-following power plant (see Power plant, Load following)

Loan guarantee 382 Lopez, Andres 368

Los Angeles air pollution 350 Loss of load expectation (LOLE) 318

Lower heating value Gasoline 222, 287

Hydrogen (see Hydrogen, Lower heating value)

Jet fuel 35

Lower respiratory tract infection 1, 278, 288

Lu, Rong 350

Lung cancer 1, 278, 288, 295

Magellan xiv

Magnesium carbonate 125 Magnetic field 149, 151

Manure 78

Masters, Gil 348, 351–352 Matthews, Chris 357 Mercury arc valve 155 Messmer plan 112 Mesosphere 2

Metal as conductors 159 Metallic phosphorescence 119

Methane 3-4, 78 (see also natural gas)

Agriculture and waste 78

Leakage 88

Methane digester 78, 121 Methanogenic bacteria 78 Microgrid 12, 32, 381 Microwave radiometer 259 Microwave scatterometer 259 Mixing ratio, volume 4

Models

For forecasting weather (see Weather prediction model)

For simulating air pollution (see Air pollution, Computer model)

For simulating climate (see Climate model)

For simulating grid stability (see Grid stability, Models)

GATOR-MMTD 350 GATOR-GCMOM 351–352 Nested global through regional 351 UCLA GCM (see UCLA, GCM)

Motor 198

Alternating current 29 Efficiency 256 Induction 29, 253 Permanent magnet 253 Munter, Leilani 356, 365, 368

Musk, Elon 356

Nameplate capacity (see Capacity, Nameplate) Natural direct air carbon capture and storage 124

Natural gas

Air pollution impacts 88–89 Banned use in new buildings 373

Boiler 41 Bridge fuel 86, 89 Capacity factor 274 Climate impacts 87–88 Compressed (CNG) 86 Construction time 274

Cost 274 Defined 86

Electric power plant 8

Combined cycle (see Combined cycle gas turbine)

Open cycle (see Open cycle gas turbine) Emissions (see Emissions, Natural gas) Fracking (see Hydraulic fracturing) Global warming potential 87 Heat emissions (see Emissions, Heat) Impacts on birds and bats 244 Industrial heat fuel 42

Lifecycle emissions (see Emissions, Lifecycle)

Liquefied (LNG) 86

Opportunity cost emissions (see Emissions, Opportunity

cost)

Mark Z Jacobson

Index

More Information

Index

Planning-to-operation time 95	Time lag between planning and operation 109, 112, 115
Policies to move away from 384	Waste risk 13, 109, 114, 118
Primary versus end-use energy for 250, 299	Weapons proliferation risk 13, 109, 115–116
Water vapor emissions (see Emissions, Water vapor)	Nuclear reactor 110
Needham, Rick, 356	Boiling water reactor 110
Negative carbon emissions 121	Breeder reactor 110
Neodymium 29, 195	Construction time 112
In permanent magnet generators 199–200	Fast reactor 111
Resources 29, 200	Flamanville 112
Net metering, virtual 384	Haiyang 112
New York climate march 368, 372	Hinkley Point 112
New York energy roadmap 355, 357, 375	Light water reactor 110
Impacts 356, 359, 372–373	Olkiluoto 112
Night ventilation (see Passive heating and cooling in buildings,	Once-through reactor 110
Night ventilation)	Planning-to-operation time 112
NIMBYism 379	Pressurized water reactor 110
Nitrate aerosol 4, 89	Ringhals 112
Nitric oxide 5	Small modular reactor (SMR) 111
Nitrogen dioxide 5	Taishan 112
Nitrogen, molecular 79	Thorium (see Thorium)
Nitrogen oxides 88–89	Vogtle 112
Nitrous oxide 3–4, 79, 122	Nuclear war
Nongovernmental organizations supporting 100 percent WWS (see	Damage from 117
100 percent network)	Risk of from civilian nuclear energy use 117
Nonmetal 159	Nuclear weapons 116
NRDC (National Resources Defense Council) 356, 359	Countries developing nuclear weapons from civilian nuclear
Nuclear fission 110, 111	energy use 117
Nuclear fusion	Programs linked to civilian nuclear energy use 117
Energy production from on Earth 111	
Inside the sun 178	Obliquity of the ecliptic 170
Nuclear power 12–13, 85, 109	Obstacles to overcome during transition to WWS 377
Capacity factor 274	Competition among solutions 382
Construction time 274	Countries engaged in conflict 381
Cost 114–115	Countries with substantial poverty 381
Debate, versus renewables 353–354	Vested interests 379
Emissions	Transitioning long-distance aircraft and ships 382
Air pollution 114	Zoning issues (NIMBYism) (see NIMBYism)
Heat (see Emissions, Heat)	Ocean acidification 4
Lifecycle carbon dioxide 114 (see also Emissions, Lifecycle)	Ocean currents 25
Nuclear war 117	Electricity generation from xiii, 25, 215, 252, 322
Opportunity cost (see Emissions, Opportunity cost)	Oil
Water vapor (see Emissions, Water vapor)	Industrial heat fuel 42
Planning-to-operation time 95, 115	Primary energy in 250
Risks 109, 111	O'Malley, Martin 369
Cost 109, 114–115, 274	Once-through reactor (see Nuclear reactor, Once-through
Delays (see Nuclear, Risks, Time lag between planning and	reactor)
operation)	Open circuit voltage (see Photovoltaic, Solar, Open circuit voltage)
Energy security risks 109, 115	Open cycle gas turbine 86–87
Impacts on birds and bats 244	Operation and Maintenance (O&M) cost 273
Meltdown risk 13, 109, 117	Fixed 274
Chernobyl 117	Variable 274
Fukushima 114, 117	Operation Teapot 111
Impacts of 118	Opinion polls 371
Three-Mile Island 117	Opportunity cost of capital 273
Mining lung cancer risk, 109, 118	Organic carbon 4, 9

420

Index

Orsted, Hans Christian 147	Material
Oversizing	n-type 162
Nameplate capacity 307, 318	p-type 162
Storage 318	Amorphous silicon 163
Oxygen evolution reaction 32	Cadmium-telluride 163
Oxygen, molecular 5	Copper-indium-gallium-selenium 163
Ozone 3–5	Gallium-arsenide 163
Loss, stratospheric 5–6	Multijunction (tandem) 163
	Organic 163
Paracelsus 29	Polycrystalline silicon 163
Particles (see Air Pollution, Particles)	Single-crystal silicon 163
Passive heating and cooling in buildings 67	Thin-film 163
Night ventilation 69	Maximum power point 165–166
Thermal mass 67, 302	Open circuit voltage 165–166
Latent heat storage materials 67	Opportunity cost emissions (see Emissions, Opportunity cost)
Sensible heat storage materials 67	Output 167
Thermochemical heat storage 68	Corrections
Ventilated façade 68, 302	Cell temperature 167
Window blinds 68, 302	DC wire losses 168
Window glazing 69, 302	Degradation with age 168
Peaking power plant (see Power plant, Peaking)	Diodes and connections 168
Penstock (see Hydropower, Penstock)	Inverter DC to AC conversion 168
Perfluorocarbons (see Halogens, Halocarbons, Perfluorocarbons)	Nameplate DC rating 168
Period of oscillation 149	Panel soiling or snow cover 168
Permittivity in a vacuum 146	Shading 168
Phase change materials 51, 67	Derate factors 169
Phase angle 149	System availability 168
Photon 177	Panel 164
Pit thermal energy storage (see Storage, Thermal, Underground,	Collector area 168
Pit)	Tracking and tilting
Planck's constant 160, 393	Benefits 175
Platinum catalyst 34	Two-axis tracking 173
Resources 34	Fixed tilt 173
Platinum group metals 34	One-axis horizontal tracking 173
Photovoltaic, Solar (PV)	One-axis vertical tracking 173
Array 164, 166	Optimal tilt angle 173–174
Capacity factor 274	Peak DC watts 166
Cell 162	Planning-to-operation time 95
Depletion region 162	Power-voltage (P-V) curve 165–166
p-n junction 162	Primary versus end-use energy 250
Construction time 274	Rooftop 72
Cost 274–275	
	Residential and commercial potential 261 Short circuit current 165–166
Component of 100 percent WWS roadmaps 252, 302, 376	Standard test conditions (STC) 166
Current-voltage (I-V) curve 165–166	Water vapor (see Emissions, Water vapor)
Defined 25, 159	Plasma 42
Efficiency 25, 161, 165–166	Plug-to-wheel efficiency 253
•	Battery-electric vehicle 253
Maximum 161, 164	· · · · · · · · · · · · · · · · · · ·
Electricity production from 162	Battery charging efficiency 253
Fill factor 165	Battery discharging efficiency 253
Floating 25 Ground cover area per panel 168	Inverter/wiring/power electronic losses 253
Ground cover ratio 168	Motor efficiency 253, 256
Ground cover ratio 168	Hydrogen fuel cell vehicle 33, 256
Jobs for construction and operation 341	Compressor efficiency 253, 256
Lifecycle emissions (see Emissions, Lifecycle)	Electricity-to-fuel ratio 256

Index

More Information

Index

421

Electrolyzer efficiency 253, 256 Fuel cell efficiency 253, 256 Inverter/wiring/power electronic losses 253, 256 Latent heat loss efficiency 253, 256 Motor efficiency 253, 256 Pneumonia (1, 278) Polarizable substance 145 Policies for transitioning to 100 percent WWS 382 Cap and trade (see Cap and trade) Carbon or pollution tax (see Carbon or pollution tax) Declining clock auction (see Declining clock auction) Energy efficiency measures 384 Standards 382 Energy supply measures 384 Feed-in-tariffs (see Feed-in-tariffs) Industrial sector measures 385 Investment subsidies 382 Laws requiring demand response 382 Loan guarantee (see Loan guarantee) Mandate emission limits 383 Municipal financing 382 Output subsidies 382 Purchase incentives and rebates 382 Renewable portfolio standards (RPSs) (see Renewable portfolio Revenue neutral carbon or pollution tax (see Carbon or pollution tax) Transportation measures 385 Utility planning and incentive structures 384 Polonium 119 Power, electric (see Electric, Power) Powerhouse (see Hydropower, Powerhouse) Power in the wind (see Wind, Power in the) Power plant Baseload 23, 53, 300 Centralized xiv, 11, 216 Combined cycle gas turbine (see Combined cycle gas turbine) Construction time 112, 274 Cost 274 Distributed 12, 216 Lifetimes 274 Load following 23, 53, 89, 321 Open cycle gas turbine (see Open cycle gas turbine) Peaking 23, 53, 89 Planning-to-operation time 112 Ramp rate 22 Supercritical pulverized coal (see Supercritical pulverized coal plant) Timeline to transition to 100 percent WWS 375 Power-voltage curve (see Photovoltaic, Solar, Power-voltage curve) Present value 272-273, 275-277, 316

Pressurized water reactor (see Nuclear reactor, Pressurized water

Primary energy 250, 299 Plutonium-239 110, 115-116 Harvesting from a uranium fuel rod 110, 116-117 Weapons proliferation risk 110, 115-116 Pumped hydropower storage (see Storage, Pumped hydropower) Pyranometer 259 R-value 72 Radiant floor heating, 60 Radiation Absorption 172, 186 Efficiency, Single particle 187 Albedo 10, 85, 189 Alpha particle 118 Asymmetry parameter 186 Effective 188 Beta particle 118 Blackbody 177, 179 Defined 177 Diffraction 187 Dispersion 186 Dispersive refraction 186 Emissivity 179 Extinction coefficient 183 Overall gas plus particle 184 From nuclear power plant meltdown 118 From nuclear waste 118 Gamma radiation 118, 178 Irradiance, Spectral 183, 189 Isotropic 174, 183-186 Laws Wien's displacement law 178 Stefan-Boltzmann law 178, 180 Optical depth 183, 184, 188, 189 Radiance, Spectral 182 Downward 188 Upward 188 Radiative transfer equation 184 Solutions 187-188 Beer's law 188 Two-stream method 188-189 Reflection 186 Refraction 170, 172, 186 Scattering Backscattering 187 Efficiency Single particle 187 Single particle forward 187 Forward scattering 187 Isotropic 185 Mie 186 Phase function 185 For solar radiation 188 Processes 186 Rayleigh 185

reactor)

Insulated water pipes 61

Steel building 71-72

Prefabricated

422

Index

Radiation (cont.)	Variable (see Variable WWS resources)
Sidescattering 187	Wind (see Wind, Resources)
Single 176, 184	Road dust 2
Multiple 184	Roadmaps for transitioning energy to 100 percent
Single-scattering albedo 187	WWS 249
Solar 2	History of development 347
Diffuse flux 172, 177, 184, 189	50-State roadmaps (see State roadmaps)
Direct flux 172, 177, 184, 189	100 percent network (see 100 percent network)
Spectrum 179	Application of weather, pollution, climate models to energy
Solar infrared (near-IR) 178	system 352–353
Thermal infrared (far-IR) 2, 178	California energy roadmap (see California energy roadmap)
Solid angle, Incremental 182	Cities roadmaps 360
Ultraviolet UV) 5, 9, 178	Country roadmaps (see Countries, 100 percent WWS
Far UV 178	roadmaps for)
Near UV 178	Development of air pollution and climate models 349-352
UV-A 178	First 100 percent WWS paper, Scientific American 353, 373
UV-B 178	Grid integration studies on 100 percent WWS 369, 371
UV-C 178	Late Show with David Letterman (see Letterman, David, Late
Visible 9, 178	Show with)
Radiator 60	Legislation 359–375
Radiative forcing 94, 97	City (see Cities, Legislation requiring 100 percent WWS fo
Radioactive waste 118	electricity)
Radon 118-119	Country (see Countries Legislation requiring 100 percent
Progeny 119	WWS for electricity)
Ramp rate, power plant (see Power plant, Ramp rate)	State (see State roadmaps, Impacts on legislation)
Rare-earth metals 199	Infographic roadmaps (see Infographic roadmaps)
RE100 372, 374-375	New York energy roadmap (See New York energy roadmap)
Reactive power 152	Solutions Project (see Solutions Project)
Real power 152	Washington State energy roadmap (see Washington State
Rechtschaffen, Cliff 366	roadmap)
Refrigeration 38, 42, 59, 310-311	Why WWS technologies were selected 353
Regenerative braking (see Battery-electric vehicles, Regenerative	World roadmap 353-354
braking)	Performing a resources analysis 258-260
Regulation (see Ancillary services, Regulation)	Roadmaps for 143 countries/24 world regions 326, 329, 371
Relative risks 295	Selecting a mix of WWS energy generators 259, 265-266, 268,
Renewable energy xiii	270, 306
Renewable portfolio standards 382, 384	Rooftop solar
Residential sector 251	Rooftop areas available by country 261-263
Timeline to transition to 100 percent WWS 375	Water heaters (see Water heaters, Rooftop solar)
Resistance, electric (See Electric, Resistance)	Photovoltaics (see Photovoltaics, Rooftop)
Resistance furnace, Electric 44, 261, 302	Ruffalo, Mark, 354-356, 357-361, 368, 373
Direct 44	Rutherford, Ernest 118
Indirect 44	
Resistance heater, Electric 41	Saltwater batteries (see Batteries, Saltwater)
Resistors	Sanders, Bernie 369–371
Wired in parallel 145	San Gorgonio Pass wind farm 194, 232
Wired in series 144	Saturation wind power potential 235
Respiratory infection (see Air pollution, Health effects, Respiratory	Land 235, 237-238
infection)	World 235, 237–238
Resources, WWS	SB 100, California senate bill 366
Analysis 258	SB 350, California senate bill 366
Lithium (see Lithium, Resources)	SB 1383, California senate bill 366
Neodymium (see Neodymium, Resources)	Scattering (see Radiation, Scattering)
Platinum (see Platinum, Resources)	Schmidt, Wendy 356
Solar (see Solar, Resources worldwide)	Schneider, Stephen 361

Index

More Information

Index

423

Scientific American 353-354, 372-373 Solar zenith angle 166, 169, 170, 171, 189 100 percent WWS article 353 In a vacuum 172-173 Scobies, Stan 355 Solutions Project 354-356, 357-360, 365, 369-371, 373 Sea level rise xiii Specific heat 67-68, 393 Sea spray 2 Specific humidity 206-207 Speed of light 141, 160, 393 Semiconductor 159 Energy bands (see Energy bands) Spinning, supplemental, and replacement reserves (see Ancillary services, Spinning, supplemental, and replacement Sensible heat (see Heat, Sensible) Shedding (see Curtailment) reserves) Ships Stability, atmospheric Difficulty in transitioning 382 Stable atmosphere 205 Timeline to transition to 100 percent WWS 376 Unstable atmosphere 205 Stanford Energy System Innovations (SESI) project 61, 70-71 Shockley-Queisser limit 161, 166 Short circuit current Stanford University 348-349 Department of Civil and Environmental Engineering 350 In photovoltaics (see Photovoltaic, Solar, Short circuit current) In power grid 149 Department of Civil Engineering 348-349 Siemens, Carl W. 43 State roadmaps 368-369 Signorelli, Gianluca 355 Impacts on legislation 369-371 Sierra Club 360, 367 Federal legislation based on 369 Cities campaign 360 Green New Deal (see Green New Deal) Silicon 159-161 State legislation based on 362, 372 States that have committed to 100 percent WWS electric power 362, Sluice gate (see Hydropower, Sluice gate) Small modular reactor (see Nuclear reactor, Small modular reactor) 371-372 Smart grid 375 Static VAr compensator 153, 322 Snell's law of refraction 172 Steam engine 21, 101, 193 Critical angle 172 Steam reforming (see Hydrogen, Production synthetic, Steam Social cost analysis 275 reforming) Steam turbine (see Turbine, Steam) Social cost of Air pollution (see Air pollution, Cost, Health cost of air pollution) Steel manufacturing 45 Carbon xiv, 106, 294, 296, 333 Hydrogen direct reduction 46 Climate change (see Social cost of, Carbon) Ironmaking 45 Energy xv, 106, 128, 272, 275, 279-280, 282, 284 Molten oxide electrolysis 46 Social discount rate (see Discount rate, Social) Steelmaking 45 Social justice 375 (see also Equitable transition) Primary 45 Sodium sulfur batteries (see Battery, Sodium sulfur) Basic oxygen 45 Soil dust 2 Secondary 45 Solar Stefan-Boltzmann law (see Radiation, Solar, Stefan-Boltzmann law) Complementary in nature with wind 305-306, 334 Stefan, Josef 178 Constant 181, 393 Stevens, Fisher 368 Energy xiii Storage 18, 59, 302 Flux at the top of the atmosphere 181 Batteries, stationary (see Battery, Stationary) Panel Tracking and Tilting (see Photovoltaic, Panel, Tracking and Cold xiv, 59 (see also Storage, Thermal) Tilting) Compressed air 58, 302 Photovoltaic (see Photovoltaic, Solar) Concentrated solar power (see Concentrated solar power, Radiation (see Radiation, Solar) Storage) Resources worldwide 175-177, 260 Cost 316, 332 Spectrum (see Radiation, Solar, Spectrum) Defined 18 Thermal collectors 332 Efficiency, round-trip 316 Solar radiation management (see Geoengineering, Solar radiation Electricity xiv, 302 Flywheel 57, 302 management) Solar thermal collectors Gravitational storage with solid masses 59, 302 Active direct circulation 39 Heat (see Storage, Thermal) Active indirect circulation 39 Hours of 18 Components of a 100 percent WWS system 252 Hydrogen xiv, 59, 69, 301 Passive 39 Hydropower (see Hydropower, Storage)

424

Index

Storage (cont.)	Electric truck 30
Mountain gravity energy storage 59	Nikola 141
Passive 67	Powerwall battery storage 314, 329
Peak capacity 18, 329	Thermal conductivity 67, 68, 72
Peak charge rate 18, 316, 329	Thermosphere 2
Peak discharge rate 18, 316, 329	Thorium 111
Pumped hydropower 53, 302	Three Gorges Dam (see Hydropower, Three Gorges Dam)
Cost 316	Three-Mile Island (see Nuclear Power, Risks, Meltdown, Three-
Penstock efficiency 54	Mile Island)
Turbine-generator-pump efficiency 54	Thyristor 155
Sizing 315	Tidal turbine 25
Thermal xiv, 59, 301, 311	Capacity factor 274
Cost 316-317, 332	Component of 100 percent WWS roadmaps 252, 302, 376
Ice 69, 301, 325	Construction time 274
Timescale of 317	Cost 274
Underground 61, 301, 325	Jobs for construction and operation 341
Aquifer 65, 301	Lifecycle emissions (see Emissions, Lifecycle)
Borehole 61, 301	Opportunity cost emissions (see Emissions, Opportunity cost)
Pit 64–65, 301	Water area required 338–339
Water tank 59, 301, 325	Tides 25
Stoutenburg, Eric 354	Timeline to transition to 100 percent WWS 353, 359, 366, 373,
Stratopause 5	375–376
Stratosphere 2, 5	For individual technologies 375
Stroke 1, 278, 288	Time-of-use pricing 76
Subsidies 379, 382	Tommy and the Professor cartoon 357
Subsolar point 170	Toon, Owen B. 350
Sulfate aerosol 4, 38, 77, 89	Transformer 149, 153–154, 212
Sulfur dioxide 88–89	Step-down 212
Sun	Step-up 154, 200, 212
Chromosphere 180	Transmission and distribution (T&D)
Corona 180	Cost 76, 332
Ecliptic longitude 170	Expansion 376
Mean anomaly 171	High voltage direct current (HVDC) (see Electric, Current,
Mean longitude 171	Direct, High voltage)
Radius 180, 394	Interconnecting (see Interconnecting, Transmission)
Photosphere 178–181	Losses 212
Solar constant (see Solar, Constant)	By country 213–214
Solar wind 180	Due to converting HVAC to HVDC and back 212
Sunspot cycle 181	Due to downed power lines 212
Sunlight (see solar energy)	Due to resistance along wires 153, 212–213
Supercritical pulverized coal plant 92	Due to theft 212
Supply, energy 299	Due to transformer losses 212–213
Matching with demand (see Grid stability)	Equation for reduced power needs due to reducing losses 213,
watering with demand (see Ord stability)	215
Tank storage (see Storage, Thermal, Water tank)	Resistance in transmission wire 153
Tank-to-wheel efficiency 253, 287	Three-phase transmission lines 151 Management 376
TED (Technology, Entertainment, Design) debate 353	
Tehachapi Pass wind farm 194	Smart grids (see Smart grids)
Temperature	Overbuilding transmission to help meet demand 318
Current global 377	Underwater 20
Defined 3 Forth equilibrium (eee Forth Equilibrium temperature)	Transistor 155
Earth equilibrium (see Earth, Equilibrium temperature)	Transportation sector 28, 250–251
Variation with altitude 207	Policies incentivizing a transition toward 100 percent
Tesla	WWS 384
Electric car 30, 56, 253	Timeline to transition to 100 percent WWS 376

Mark Z Jacobson

Index

More Information

Index

Tropopause 5	Voltage 142, 159
Troposphere 2, 5	Root-mean-square 149
Turbine	Voltage control (see Ancillary services, Voltage control)
Steam 27	Voltaic cell (see Battery, Voltaic cell)
Water 22, 54	Volume mixing ratio (see Mixing ratio, volume)
Turbulence 204	Volumetric heat capacity 67–68
Mechanical 204	volumente neut capacity or oo
Turbulence 205	Wank, Jon 356, 357, 368
Turco, Richard 350	Washington State roadmap 360
Taree, Identifa 550	Waste burning 77
UCLA 350	Water
GCM 351	Power xiii
U-factor 72	Specific weight 24, 54
Ultraviolet laser, high-powered 259	Water heaters 39, 41, 50, 59, 74, 155, 252
Ultraviolet radiation (see Radiation, Ultraviolet)	Heat pump (see Heat pump, Water heater)
Underground thermal energy storage (see Storage, Thermal,	Rooftop solar (see Solar thermal collectors)
Underground)	Water-source heat pump (see Heat pump, Water source)
United Nations	Water turbine (see Turbine, Water)
Climate conference (see Conference of the parties 21)	
-	Water vapor 4
General assembly 368	Anthropogenic (see Emissions, Water vapor)
Uprating (see Hydropower, Uprating) Uranium 13	Anthropogenic warming due to 3, 98–100 Natural warming due to 3
	e e e e e e e e e e e e e e e e e e e
Enriched	Specific humidity (see specific humidity)
Highly 116	Watt (unit of power) 18
Low 116	Wave
Weapons grade 116	Energy devices 20
Enrichment 116	Capacity factor 274, 305
Centrifugal diffusion 116	Components of 100 percent WWS roadmaps 252, 302, 322, 376
Centrifuge 116	Construction time 274
Gas diffusion 116	Cost 274
Fuel rods 116, 118	Jobs for construction and operation 341
Mining 118–119	Lifecycle emissions (see Emissions, Lifecycle)
Resources 110, 117	Opportunity cost emissions (see Emissions, Opportunity cost)
U-234 116, 119	Water area required 338–339
U-235 110, 116	Formation of a wave 20
U-238 110, 116, 119	Variability of wave energy 20, 318
Weapons grade 116	Reducing variability by combining wave and wind power 305,
Yellowcake (see Yellowcake)	318, 354
Urban heat island effect 3, 10	Reducing variability by interconnecting wave farms 320
Utilities supporting 100 percent WWS 372	Wavelength of electromagnetic radiation 177
Appalachian Power 100 percent wind, water, and sunlight	Wavelength, band gap 160
(WWS) service 372	Weather forecasting for grid stability 319
Policies aimed at utilities to move to 100 percent 384	Weather prediction model 350
	Weatherizing buildings 50
Vacuum furnace 45	Weihl, Bill 356
Valence band (see Energy bands, Valence)	Westinghouse, George 154
Valence electron (see Electron, Valence)	White roofs 132
Value of statistical life (VOSL) 287-288, 293	Wien, Wilhelm 178
Van Helmont, John Baptist 125	Wildfires (see Biomass burning, Wildfires)
Van Horn, Jodie 360–361	Wind
Variable WWS resources 300	Anticyclonic flow 226
Vehicle-to-grid 319	Convergence 223, 226
Ventilated façade (see Passive heating and cooling in buildings,	Complementary in nature with solar 305-306, 334
Ventilated facade)	Component of 100 percent WWS roadmaps 252, 302, 376
Volta, Alessandro 54	Cost 274

426

Index

Wind (cont.)	Lifecycle emissions (see Emissions, Lifecycle)
Cyclonic flow 226	Opportunity cost emissions (see Emissions, Opportunity cost)
Divergence 223, 226	Water vapor (see Emissions, Water vapor)
Forces acting on air to produce winds, 224	Onshore 18, 19, 193
Apparent centrifugal force 224	Lifecycle emissions (see Emissions, Lifecycle)
Centripetal acceleration 224	Opportunity cost emissions (see Emissions, Opportunity cost)
Apparent Coriolis force 223–224	Water vapor (see Emissions, Water vapor)
Friction force 224	Output power density 219, 221–222
Pressure gradient force 222, 224	Planning-to-operation time 95
Geostrophic adjustment 225	Spacing (see Land requirements, Spacing, Wind farm)
Geostrophic balance 224	Windmill 193
Global circulation cells 228	Wind resources 222, 232
Ferrell cell (see Ferrell cell)	California offshore wind resources 234, 352
Hadley cell (see Hadley cell)	East coast U.S. offshore wind resources 234, 352
Polar cell 227	Percent of world with wind speeds sufficiently fast for wind
Global wind systems	energy 233
Jet streams	Saturation wind power potential (see Saturation wind power
Polar front 229	potential)
Subtropical 229	World mean wind speeds at 100 m above ground 233
Polar easterlies 230	
Trade winds 229	World wind resources 237, 260
Northeast 229	Wind turbine 18, 193
Southeast 229	Angle of attack 196
	Capacity factor 209–210, 274, 305
Westerly winds 229	As a function of installed and output power densities 219, 222
Aloft worldwide 229–230	As a function of mean wind speed 211
Jobs for construction and operation 341	Empirical equation for 210, 352
Kinetic energy in the wind 204, 235	Construction time 274
Competition among turbines for 216, 236	Defined 18
Reduction in wind speed due to 237	Efficiency 211
Units of kWh 203	Feathering 197
Local wind systems	Forces acting on airfoil
Bay breezes 230	Drag 196–197
Gap winds 232	Lift 196–197
Tunnelling effect 232	Foundations
Lake breezes 230	Bottom fixed 19
Mountain/valley breezes 232	Gravity 19
Sea/land breezes 230	Jacket 19
Meridional winds 227	Monopile 19
Power in the wind 203	Tripod 19
Instantaneous 203, 208	Hub height 194, 205
Mean 203	Impacts on birds and bats 244
Resources (see Wind resources)	Raptors 244
Types of wind resulting from forces	Impacts on climate
Geostrophic 224	Kinetic energy 217, 239–240
Gradient wind 225–226	Pressure in wake 99
Surface winds along straight isobars 225	Temperatures 100, 238–241
Surface winds around centers of low and high 227	Water vapor 99-100, 238-241
Zonal winds 227	Wind speed 238
Wind energy xiii	Impacts on hurricanes (see Hurricanes, Wind turbine impacts on)
Wind formation 10	Materials
Wind farm	Aluminum 195
Cluster of turbines 220	Copper 195
Footprint (see Land requirements, Footprint, Wind farm)	Concrete 195
Installed power density 218, 219, 221–222	Neodymium (see Neodymium)
Offshore 18, 19, 193	Steel 195

More Information

Index

Nameplate capacity 200	Tension leg platform 19
Number of turbines to power all U.S. vehicles if they were electric	Gearless 18, 195
221–222	High altitude 19
Parts	Horizontal axis 193–195
Anemometer 195	Typhoon-class 201
Blade 195	Upwind 194
Brake 195	Vertical axis 193–195
Controller 195	Window blinds (see Passive heating and cooling in buildings,
Generator 195, 198 (see also Generator)Direct drive 195	Window blinds)
Heat exchanger 195	Window glazing (see Passive heating and cooling in buildings,
High-speed shaft 195	Window glazing)
Nacelle 195	Wind shear 194
Pitch system 195	Wind speed
Rotor 194	Frequency distribution 201, 304
Diameter 201, 203	Rayleigh 201–202
Efficiency 209	Weibull 201–202
Tip speed ratio 209	Variation with height 203-205
Wind vane 195	1/7 th power law profile 204
Yaw control 194	Log law profile 204
Yaw drive 195	Surface roughness length for momentum 204
Yaw motor 195	Power law profile 204
Pitch 193	Friction coefficient 204
Control 197	Wind vane 193
Power curve 200–201	WWS (Wind-Water-Solar)
Cut-in wind speed 200	Benefits of transitioning to 100 percent WWS 385
Cut-out wind speed 200	Best technologies for solving pollution and climate
Destruction wind speed 200	problems 353
Rated power 200	Grid stability with (see Grid stability)
Rated wind speed 200	Mix of WWS energy generators for a region 259, 265-266, 268
Power output 209	270, 306
Annual average 209	Origin of the term 353
Instantaneous 235	Roadmaps for countries/world regions 326, 368–369
Losses	Characteristics of storage in some regions 329
Array 216-217	History of roadmap development (see Roadmaps for
Curtailment 216	transitioning energy to 100 percent WWS, History of
Downtime 216	development)
Overall 217	System diagram 302
Transmission and distribution inefficiencies 212	Technologies xiii, 17, 302
Stall 197	Appliances 48, 302
Control	Building heating and cooling technologies 38, 302
Active 197	Electricity generation technologies 18, 302
Passive 197	High-temperature Industrial heat technologies 17, 42,
Tip height 219	302
Types	Storage technologies 17, 51, 302
2-Blade 194	Transportation technologies 17, 28, 302
3-Blade 194	Transportation technologies 17, 20, 302
Darrieus 195	Yellowcake 116
Floating 19	Tenoweare 110
	Zonal avoraga 175
Semi-submersible platform 19	Zonal average 175
Spar-buoy platform 19	Zoning issues (see NIMBYism)