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The driven cavity

1.1 The problem

We start with a simple problem for the Navier–Stokes equations, solved by

simple methods. We will find the two-dimensional incompressible flow

governed by

∇ · u = 0,

ρ

(

∂u

∂t
+ u · ∇u

)

= −∇p + µ∇2u,

with constant density ρ and viscosity µ. These equations are to be solved inside

a square L×L box with boundary conditions of no slip on the bottom and sides

and a prescribed horizontal velocity along the top

u = 0 on y = 0 and 0 < x < L, and on x = 0 or L and 0 < y < L,

and u = (U(x), 0) on y = L and 0 < x < L.

This rectangular geometry is good for simple numerical methods.

We will evaluate the viscous force on the top

F =

∫ L

0

µ
∂u

∂y

∣

∣

∣

∣

∣

y=L

dx.

1.2 Know your physics

Before writing any code, it is worth thinking about the physics of the gov-

erning equations at the numerical grid level. The converse is also true that

when presented with a new system of governing equations thinking about how

to solve them numerically often deepens one’s understanding of their physics.
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4 The driven cavity

The Navier–Stokes equations have three different physics activities represented

by different combinations of the terms.

First on the left-hand side,

∂u

∂t
+ u · ∇u

says that information is propagated with the flow, at velocity u. This means in

a short time interval ∆t information has propagated a distance u∆t from one

grid point towards another. One might want to limit the size of the time-step so

that information is not propagated too far, say more than one space grid block,

in one time-step.

Looking just at the far left and far right terms of the Navier–Stokes equa-

tions, we have

ρ
∂u

∂t
= µ∇2u,

i.e. a diffusion equation with a diffusivity of the kinematic viscosity ν = µ/ρ.

Thus in one time-step ∆t information diffuses a distance
√
ν∆t. Keeping this

distance less than one grid block requires very small time-steps. While diffu-

sion is relatively fast on small length scales, it is slow on a large length scales,

so one often has to wait rather a long time for information to have diffused over

the whole grid.

Finally the terms

ρ
∂u

∂t
= −∇p with ∇ · u = 0

are capable of propagating information to great distances in zero time, partic-

ularly in impulsively started motion of bodies in a fluid, reflecting the infinite

speed of sound in our incompressible fluid. This behaviour is awkward for nu-

merical work, and an early warning that treating the pressure will not be easy.

The Reynolds number Re = UL/ν measures the relative importance of iner-

tial to viscous terms in the Navier–Stokes equations. At low Reynolds numbers,

typically Re < 1, vorticity diffuses rapidly and this must resolved numerically.

On the other hand at high Reynolds numbers, typically Re > 1,000, there are

thin boundary layers and sometimes long wakes which must be resolved nu-

merically. To avoid these difficulties in our first simple problem, we shall set

the Reynolds number to

Re = 10,

which is not too low and not too high. Moreover the analytical theories for low

and for high Reynolds numbers will not work well at this intermediate value,

making numerical solution the only way to solve the problem.
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1.3 Know your PDEs 5

1.3 Know your PDEs

Before attempting to solve any equations, it is necessary to know what bound-

ary and initial conditions must be satisfied in order to make the problem well

posed, i.e. has a solution which is unique if appropriate and which is not too

sensitive to the input data. Applying the wrong type of boundary conditions to

an equation can result in there being no solution, although the computer will

often misleadingly deliver an output.

The simplest partial differential equation, which is also present in the Navier–

Stokes equations, is the first-order hyperbolic equation in one space and one

time dimension

∂φ

∂t
+ u(x, t)

∂φ

∂x
= f (x, t).

To make this well posed one needs initial data φ(x, 0) at t = 0 over some space

interval a < x < b along with inflow boundary data, say φ(a, t) at x = a for

t > 0 if u(a, t) > 0.

The next prototype equation is the second-order hyperbolic equation, better

known as the wave equation

∂2φ

∂t2
= c2 ∂

2φ

∂x2
.

Being second order in time, this needs both the initial value and the initial

time derivative, φ(x, 0) and φt(x, 0) at t = 0 over some interval a < x < b. As

information propagates in both directions, boundary data must be supplied at

both ends of the interval, e.g. φ(a, t) and φ(b, t) for t > 0, although in place of

the value the spatial derivative φx or some combination such as φ + φx can be

given. On an infinite domain, the boundary conditions are replaced by radiation

conditions, which are often tricky to impose numerically.

Another second-order equation is an elliptic equation, better known as the

Poisson or Laplace equation

∇2φ = ρ.

This needs boundary data φ or ∂φ/∂n or some combination α∂φ/∂n+ βφ (with

restrictions on α and β) given all around the boundary.

Finally there is the parabolic equation, better known as the heat equation

∂φ

∂t
= D
∂2φ

∂x2
.

Being first order in time, it needs initial data φ(x, 0) at t = 0 over some in-

terval, while being second order in space it needs information (φ or φx or a

combination) at the boundaries at both ends x = a and x = b.
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6 The driven cavity

The curious nomenclature comes from classifying the general linear second-

order partial differential equation in two dimensions

a
∂2φ

∂x2
+ b
∂2φ

∂x∂y
+ c
∂2φ

∂y2
+ d
∂φ

∂x
+ e
∂φ

∂y
+ f = 0,

by comparing with the conic sections

ax2
+ bxy + cy2

+ dx + ey + f = 0

of hyperbolas, ellipses and parabolas. With the obvious exception of the degen-

erate case of a parabolic equation, the first- and zero-order derivatives play a

minor role in determining the mathematical behaviour, and so can be nonlinear

without changing what constitutes a well-posed problem.

Numerically, hyperbolic equations are the most difficult to solve. In that they

preserve information which they propagate around, any numerical error will be

preserved, until it accumulates to swamp the real solution. Elliptic equations

are the most costly to solve numerically, because every point in the domain

influences every other point, which produces a very large coupled problem.

Parabolic equations are the easiest and cheapest equation to solve on a com-

puter. Practically any method works and works well, because little numerical

errors made at one time-step decay very rapidly within a few further steps.

1.4 Special physics of the corner

In the computational fluid dynamics (CFD) literature it is very common to take

a constant uniform velocity along the top lid of the cavity

U(x) = U0.

Unfortunately this has a stress singularity in the corners like σ ∝ r−1 due to

the discontinuity of the velocity at the corners. The stress singularity gives an

infinite force on the top plate.

A better choice would be a velocity which vanishes linearly into the corners

U(x) = U0 sin(πx/L).

The viscous stresses are now regular, but the pressure has a logarithmic sin-

gularity. This weak singularity is integrable, but still is difficult to represent

numerically.

Hence we shall take a velocity of the lid which vanishes quadratically at the

corners

U(x) = U0 sin2(πx/L).
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1.6 Steady vs transient calculations 7

1.5 Nondimensionalisation

Engineers always use dimensional variables in computations: scientists do not.1

We therefore scale the velocity u with U0, lengths x and y with L, time t

with L/U0 and pressure p inertially with ρU2
0
. This introduces a single non-

dimensional group, the Reynolds number

Re =
inertial terms ρU2

0
/L

viscous terms µU0/L
2
=

U0L

ν
.

The nondimensionalised problem is then

∇ · u = 0,

(

∂u

∂t
+ u · ∇u

)

= −∇p +
1

Re
∇2u,

subject to boundary conditions

u = 0 on y = 0 and 0 < x < 1, and on x = 0 or 1 and 0 < y < 1

and u = (sin2(πx), 0) on y = 1 and 0 < x < 1.

We take a state of rest as the initial condition

u(x, y, 0) = 0 at t = 0 for 0 < x < 1 and 0 < y < 1.

We seek a solution at Re = 10.

Finally the force on the lid is scaled viscously by µU0, so that we will

evaluate

F =

∫ 1

0

∂u

∂y

∣

∣

∣

∣

∣

y=1

dx.

1.6 Steady vs transient calculations

While one might be interested only in the final steady state, it is normally

easier to compute the time evolution from a simple initial condition to the final

steady state. This is because the equations for the steady state are nearly always

highly nonlinear, whereas the initial value problem is linear in the highest time

derivative, e.g. linear in ∂u/∂t in the Navier–Stokes equations. Moreover, there

is the possibility that a steady state might not exist, or if it does exist might not

1 An issue of philosophy. Engineers are interested in one practical realisation with all minor
complications included, while scientists are interested in the general behaviour in a highly
simplified model stripped of all minor complications. Adding complications increases the
number of nondimensional groups faster than the number of dimensional variables.
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8 The driven cavity

be stable. The initial value problem will always have a solution, subject to there

not being a finite-time blowup, and will show that a steady state is unstable if

it is unstable.

Sometimes initial value problems approach the final steady state very slowly,

and in such cases ways can be found to accelerate the slowly decaying

transients.

Note that if one is interested in a series of steady problems, say the steady-

state force on the top lid as a function of Reynolds number, then it is not nec-

essary to begin each calculation from rest. Instead one can start the calculation

for the next Reynolds number from the steady solution for the last Reynolds

number. That would be a crude form of ‘parameter continuation’.

Some relaxation methods for finding directly the steady state can be viewed

as pseudotime evolutions.

§15.1 in Part III discusses methods for finding steady states.

1.7 Pressure!

The general idea for computing the evolution of the flow will be to be given

u(x, t) at one time t, from this to evaluate ∂u/∂t then and hence calculate u(x, t)

at the next time level t+∆t. In this scheme we can easily evaluate the contribu-

tions to ∂u/∂t from −u ·∇u and from 1
Re
∇2u. The problem arises of how we are

going to find the pressure gradient −∇p. In analytic calculations, the pressure

field just seems to drop out of the calculation, so that it is only when one first

tries to find a flow numerically one realises that it is a nontrivial issue to find

the pressure.

The pressure field enables one to satisfy the conservation of mass: mathe-

matically speaking, it is the ‘Lagrangian multiplier’ associated with the sol-

enoidal constraint ∇ · u = 0. In compressible fluids, the pressure is determined

locally by the local density and temperature from an equation of state. In the

incompressible limit, the pressure has to be determined globally by the need to

make the velocity field solenoidal globally.

There are two alternative ways of tackling the pressure problem. In the

so-called primitive variable formulation, we shall find the pressure gradient

which makes the velocity solenoidal. Before tackling the problem head on, we

will sidestep the pressure problem with the so-called streamfunction-vorticity

formulation. This formulation is restricted to two-dimensional problems. The

two formulations are taken up in the next two chapters.
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