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Preface

This book has been primarily written for people who need lots of computing power,

including those engaged in scientific research who need this power to acquire, process,

analyse or model their data. People working with medical data who need to process ever-

larger data sets and more complicated image data are also likely to find this book helpful.

Complicated and demanding computations are something I have been doing for my entire

research career, firstly in experimental high-energy physics and more recently in various

applications of medical imaging. The advent of GPU computing is one of the most exciting

developments I have yet seen, and one reason for writing this book is to share that

excitement with readers.

It seems to be a corollary of Moore’s law that the demand for computing power increases

to always exceed what is currently available. Since the dawn of the PC age in the early

1980s, vendors have been providing supplementary cards to improve the speed of rendering

displays. These cards are now known as graphics processing units or GPUs, and, driven by

the demands of the PC gaming industry, they have become very powerful computing engines

in their own right. The arrival in 2007 of the NVIDIA CUDA Toolkit for writing software

that exploits the power of GPUs for scientific applications was a game changer. Suddenly we

got a step up in computing power by a factor of 100 instead of the usual doubling every

18 months or so. Since then, the power of GPUs has also continued to grow exponentially

over time, following and even exceeding Moore’s law. Thus, knowing how to program

GPUs is just as useful today as it was in 2007. In fact, today, if you want to engage with

high-performance computing (HPC) perhaps on world-class supercomputers, knowing how

to use GPUs is essential.

Up till about 2002 the exponential growth in PC computing power was largely due to

increasing clock speeds. However, since then, clock speeds have plateaued at around

3.5 GHz, but the number of cores in a CPU chip has steadily increased. Thus, parallel

programming, which uses many cooperating cores running simultaneously to share the

computing load for a single task, is now essential to get the benefit from modern hardware.

GPUs take parallel programming to the next level, allowing thousands or even millions of

parallel threads to cooperate in a calculation.

Scientific research is difficult, and competitive, available computing power is often a

limiting factor. Speeding up an important calculation by a factor of, say, 200 can be a game

changer. A running time of a week is reduced to less than one hour, allowing for same-day

analysis of results. A running time of one hour would be reduced to 18 seconds, allowing for

exploration of the parameter space of complex models. A running time of seconds is reduced
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to milliseconds, allowing for interactive investigation of computer models. This book should

be particularly useful to individual researchers and small groups who can equip their own in-

house PCs with GPUs and get these benefits. Even groups with good access to large HCP

facilities would benefit from very rapid tools on their own desktop machine to explore

features of their results.

Of course, this book is also suitable for any reader interested in finding out more about

GPUs and parallel programming. Even if you already know a little about the subject, we

think you will find studying our coding style and choice of examples rewarding.

To be specific, this book is about programming NVIDIA GPUs in C++. I make no

apology for concentrating on a specific vendor’s products. Since 2007 NVIDIA have

become a dominant force in HPC and, more recently, also AI. This is due to both the cost-

effectiveness of their GPUs and, just as importantly, the elegance of the C++-like CUDA

language. I know that some scientific programming is still carried out in various dialects of

Fortran (including Fortran IV, a language I was very fond of in the early 1980s). But C++ is,

in my opinion, more expressive. Fans of Fortran may point out that there is a technical

problem with optimising C++ code using pointers, but that problem was overcome in C++11

with the introduction of the restrict keyword in C11. This keyword is also supported by

modern C++ compilers, and it is used in many of our examples.

The examples are one feature that distinguishes this book from other current books on

CUDA. Our examples have been carefully crafted from interesting real-world applications,

including physics and medical imaging, rather than the rather basic (and frankly boring)

problems often found elsewhere. Another difference between this book and others is that we

have taken a lot of care over the appearance of our code, using modern C++ where

appropriate, to reduce verbosity while retaining simplicity. I feel this is really important; in

my experience most scientific PhD students learn computing by modifying other people’s

code, and, while much of the CUDA example code currently circulating works, it is far from

elegant. This may be because in 2007 CUDA was launched as an extension to C, not C++,

and most of the original SDK examples were written in a verbose C style. It is unfortunate

that that style still persists in many of the online CUDA tutorials and books. The truth is that

CUDA always supported some C++, and nowadays CUDA fully supports up to C++17

(albeit with a few restrictions). In November 2019 the venerable “NVIDIA C Programmers

Guide” was renamed the “NVIDIA C++ Programmers Guide”, and, although then there was

no significant change to the content of the guide, it did signal a change in NVIDIA’s attitude

to their code, and since 2020 some more advanced uses of C++ have started to appear in the

SDK examples.

This book does not aim to teach you C++ from scratch; some basic knowledge of C++ is

assumed. However Appendix I discusses some of the C++ features used in our examples.

Modern C++ is actually something of a monster, with many newer features to support object-

orientated and other high-level programming styles. We do not use such features in this

book, as, in our view, they are not appropriate for implementing the algorithmic code we run

on GPUs. We also favour template functions over virtual functions.

To get the most out of our book, you will need access to a PC equipped with an NVIDIA

GPU supporting CUDA (many of them do). The examples were developed using a Windows

10 PC with a 4-core Intel CPU and an NVIDIA RTX 2070 GPU (costing £480 in 2019).

A Linux system is also fine, and all our examples should run without modification. Whatever
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system you have, you will need a current version of the (free) NVIDIA CUDAToolkit. On

Windows, you will also need Visual Studio C++ (the free community version is fine). On

Linux, gcc or g++ is fine.

Sadly, we cannot recommend CUDA development on macOS, since Apple do not use

NVIDIA cards on their hardware and their drivers do not support recent NVIDIA cards. In

addition, NVIDIA have dropped support for macOS starting with their Toolkit version 11.0,

released in May 2020.

All of the example code can be downloaded from https://github.com/RichardAns/CUDA-

Programs. This site will also contain errata for the inevitable bugs that some of you may find

in my code. By the way, I welcome reader feedback about bugs or any other comments. My

email address is rea1@cam.ac.uk. The site will be maintained, and I also hope to add some

additional examples from time to time.

I hope you enjoy reading my book as much as I have enjoyed writing it.
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