
Cambridge University Press & Assessment
978-1-108-47953-0 — Programming in Parallel with CUDA
Richard Ansorge 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Programming in Parallel with CUDA

CUDA is now the dominant language used for programming GPUs; it is one of the

most exciting hardware developments of recent decades. With CUDA, you can use a

desktop PC for work that would have previously required a large cluster of PCs or

access to an HPC facility. As a result, CUDA is increasingly important in scientific

and technical computing across the whole STEM community, from medical physics

and financial modelling to big data applications and beyond.

This unique book on CUDA draws on the author’s passion for and long experi-

ence of developing and using computers to acquire and analyse scientific data. The

result is an innovative text featuring a much richer set of examples than found in any

other comparable book on GPU computing. Much attention has been paid to the

Cþþ coding style, which is compact, elegant and efficient. A code base of examples

and supporting material is available online, which readers can build on for their own

projects.

Richard Ansorge is Emeritus University Senior Lecturer at the Cavendish

Laboratory, University of Cambridge and Emeritus Tutor and Fellow at

Fitzwilliam College, Cambridge. He is the author of over 170 peer-reviewed publi-

cations and co-author of the book The Physics and Mathematics of MRI (2016).

www.cambridge.org/9781108479530
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-47953-0 — Programming in Parallel with CUDA
Richard Ansorge 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

www.cambridge.org/9781108479530
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-47953-0 — Programming in Parallel with CUDA
Richard Ansorge 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Programming in Parallel
with CUDA

A Practical Guide

Richard Ansorge

www.cambridge.org/9781108479530
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-47953-0 — Programming in Parallel with CUDA
Richard Ansorge 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

103 Penang Road, #05–06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of

education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781108479530

DOI: 10.1017/9781108855273

© Richard Ansorge 2022

This publication is in copyright. Subject to statutory exception

and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2022

Printed in the United Kingdom by TJ Books Limited, Padstow Cornwall

A catalogue record for this publication is available from the British Library.

ISBN 978-1-108-47953-0 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy

of URLs for external or third-party internet websites referred to in this publication

and does not guarantee that any content on such websites is, or will remain,

accurate or appropriate.

www.cambridge.org/9781108479530
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-47953-0 — Programming in Parallel with CUDA
Richard Ansorge 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

To Catherine and Lydia

www.cambridge.org/9781108479530
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-47953-0 — Programming in Parallel with CUDA
Richard Ansorge 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

www.cambridge.org/9781108479530
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-47953-0 — Programming in Parallel with CUDA
Richard Ansorge 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Contents

List of Figures page x

List of Tables xiii

List of Examples xv

Preface xix

1 Introduction to GPU Kernels and Hardware 1

1.1 Background 1

1.2 First CUDA Example 2

1.3 CPU Architecture 10

1.4 CPU Compute Power 11

1.5 CPU Memory Management: Latency Hiding Using Caches 12

1.6 CPU: Parallel Instruction Set 13

1.7 GPU Architecture 14

1.8 Pascal Architecture 15

1.9 GPU Memory Types 16

1.10 Warps and Waves 18

1.11 Blocks and Grids 19

1.12 Occupancy 20

2 Thinking and Coding in Parallel 22

2.1 Flynn’s Taxonomy 22

2.2 Kernel Call Syntax 30

2.3 3D Kernel Launches 31

2.4 Latency Hiding and Occupancy 37

2.5 Parallel Patterns 39

2.6 Parallel Reduce 40

2.7 Shared Memory 51

2.8 Matrix Multiplication 53

2.9 Tiled Matrix Multiplication 61

2.10 BLAS 65

3 Warps and Cooperative Groups 72

3.1 CUDA Objects in Cooperative Groups 75

3.2 Tiled Partitions 80

vii

www.cambridge.org/9781108479530
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-47953-0 — Programming in Parallel with CUDA
Richard Ansorge 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

3.3 Vector Loading 85

3.4 Warp-Level Intrinsic Functions and Sub-warps 89

3.5 Thread Divergence and Synchronisation 90

3.6 Avoiding Deadlock 92

3.7 Coalesced Groups 96

3.8 HPC Features 103

4 Parallel Stencils 106

4.1 2D Stencils 106

4.2 Cascaded Calculation of 2D Stencils 118

4.3 3D Stencils 123

4.4 Digital Image Processing 126

4.5 Sobel Filter 134

4.6 Median Filter 135

5 Textures 142

5.1 Image Interpolation 143

5.2 GPU Textures 144

5.3 Image Rotation 146

5.4 The Lerp Function 147

5.5 Texture Hardware 151

5.6 Colour Images 156

5.7 Viewing Images 157

5.8 Affine Transformations of Volumetric Images 161

5.9 3D Image Registration 167

5.10 Image Registration Results 175

6 Monte Carlo Applications 178

6.1 Introduction 178

6.2 The cuRAND Library 185

6.3 Generating Other Distributions 196

6.4 Ising Model 198

7 Concurrency Using CUDA Streams and Events 209

7.1 Concurrent Kernel Execution 209

7.2 CUDA Pipeline Example 211

7.3 Thrust and cudaDeviceReset 215

7.4 Results from the Pipeline Example 216

7.5 CUDA Events 218

7.6 Disk Overheads 225

7.7 CUDA Graphs 233

8 Application to PET Scanners 239

8.1 Introduction to PET 239

8.2 Data Storage and Definition of Scanner Geometry 241

8.3 Simulating a PET Scanner 247

viii Contents

www.cambridge.org/9781108479530
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-47953-0 — Programming in Parallel with CUDA
Richard Ansorge 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

8.4 Building the System Matrix 259

8.5 PET Reconstruction 262

8.6 Results 266

8.7 Implementation of OSEM 268

8.8 Depth of Interaction (DOI) 270

8.9 PET Results Using DOI 273

8.10 Block Detectors 274

8.11 Richardson–Lucy Image Deblurring 286

9 Scaling Up 293

9.1 GPU Selection 295

9.2 CUDA Unified Virtual Addressing (UVA) 298

9.3 Peer-to-Peer Access in CUDA 299

9.4 CUDA Zero-Copy Memory 301

9.5 Unified Memory (UM) 302

9.6 A Brief Introduction to MPI 313

10 Tools for Profiling and Debugging 325

10.1 The gpulog Example 325

10.2 Profiling with nvprof 330

10.3 Profiling with the NVIDIAVisual Profiler (NVVP) 333

10.4 Nsight Systems 336

10.5 Nsight Compute 338

10.6 Nsight Compute Sections 339

10.7 Debugging with Printf 347

10.8 Debugging with Microsoft Visual Studio 349

10.9 Debugging Kernel Code 352

10.10 Memory Checking 354

11 Tensor Cores 358

11.1 Tensor Cores and FP16 358

11.2 Warp Matrix Functions 360

11.3 Supported Data Types 365

11.4 Tensor Core Reduction 366

11.5 Conclusion 371

Appendix A A Brief History of CUDA 373

Appendix B Atomic Operations 382

Appendix C The NVCC Compiler 387

Appendix D AVX and the Intel Compiler 393

Appendix E Number Formats 402

Appendix F CUDA Documentation and Libraries 406

Appendix G The CX Header Files 410

Appendix H AI and Python 435

Appendix I Topics in C++ 438

Index 448

Contents ix

www.cambridge.org/9781108479530
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-47953-0 — Programming in Parallel with CUDA
Richard Ansorge 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Figures

1.1 How to enable OpenMP in Visual Studio page 6

1.2 Simplified CPU architecture 10

1.3 Moore’s law for CPUs 11

1.4 Memory caching on 4-core Intel Haswell CPU 13

1.5 Hierarchical arrangement of compute cores in an NVIDIA GTX1080 16

1.6 GPU memory types and caches 18

2.1 Latency hiding on GPUs 38

2.2 Pairwise reduction for the last 16 elements of x 40

2.3 Tiled matrix multiplication 62

2.4 Performance of matrix multiplication on an RTX 2070 GPU 69

3.1 Performance of the reduction kernels on a Turing RTX 2070 GPU 88

3.2 Performance differences between reduce kernels 88

3.3 Performance of the reduce_coal_any_vl device function 102

4.1 Performance of 2D 4-point and 9-point stencil codes 111

4.2 Approach to convergence for 512� 512 arrays 115

4.3 Typical filters used for digital image processing 127

4.4 Result of filters applied to reference image 127

4.5 Noise reduction using a median filter 136

4.6 Batcher sorting networks for N = 4 and N = 9 138

4.7 Modified Batcher network to find median of nine numbers 138

5.1 Pixel and image addressing 143

5.2 Bilinear interpolation for image pixels 143

5.3 Interpolation modes with NVIDIA textures 145

5.4 Image quality after rotation using nearest pixel and bilinear interpolations 146

5.5 Rotations and scaling of test image 154

5.6 Test image at 32� 32 resolution 156

5.7 ImageJ dialogue for binary image IO 158

5.8 Affine transformations of a 256� 256� 256 MRI head scan 165

5.9 Image registration results 175

5.10 Output from registration program 176

6.1 Calculation of π 179

6.2 3D Ising model results showing 2D x-y slice at central z 207

7.1 Timelines for three-step pipeline code generated using NVVP 217

7.2 NVVP timelines for the event2 program 226

x

www.cambridge.org/9781108479530
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-47953-0 — Programming in Parallel with CUDA
Richard Ansorge 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

7.3 Scheme for asynchronous host disk IO 227

7.4 Possible topologies for CUDA graph objects 234

8.1 PET detector showing four rings of 48 detectors 240

8.2 Transverse views of coordinate systems used for PET 240

8.3 Encoding scheme for lines of response in PET scanner 243

8.4 PET (c, r) and (x, y) coordinates 245

8.5 PET detector spot maps for second gamma from LOR 256

8.6 Derenzo Phantom transverse and 3D views and generated counts per LOR 266

8.7 MLEM iteration time as a function of the number of thread blocks 267

8.8 PET reconstruction results for MLEM and OSEM with an RTX 2070 GPU 269

8.9 PET depth of interaction errors 270

8.10 LOR paths in blocked PET detectors 274

8.11 Ray tracing through a coordinate aligned block 275

8.12 Image deblurring using the Richardson–Lucy MLEM method 290

9.1 Topologies of HPC systems with multiple GPUs 294

9.2 CUDA unified virtual memory 299

10.1 NVVP timelines for gpulog example: 100 ms per step 334

10.2 NVVP timelines for gpulog example: 100 µs per step 335

10.3 NVVP timelines for gpulog example: 2.5 µs per step 336

10.4 Nsight Systems start-up screen 337

10.5 Nsight Systems timeline display 338

10.6 Timeline from Figure 10.6 expanded by a factor of ~6 � 105 338

10.7 Nsight Compute start-up dialog 339

10.8 Profiling results from Nsight Compute 339

10.9 GPU Speed of Light: kernel performance 340

10.10 GPU Speed of Light: roofline plot for two kernels 340

10.11 Compute workload analysis: chart for two kernels 341

10.12 Memory workload analysis: flow chart for gpu_log kernel 342

10.13 Scheduler statistics 343

10.14 Warp state statistics: showing data for two kernels 343

10.15 Instruction statistics: statistics for two kernels 344

10.16 Occupancy: theoretical and achieved values for gpulog program 346

10.17 Source counters: source and SASS code for gpulog program 347

10.18 Preparing a VS-debugging session 350

10.19 Start of VS debugging after pressing F5 351

10.20 VS debugging at second break point 352

10.21 VS debugging: using Nsight for kernel code 353

10.22 VS CUDA kernel debugging with Nsight plugin 353

11.1 Floating-point formats supported by NVIDIA tensor cores 359

Appendix Figures

A.1 ToolKit version 10.2 install directory on Windows 10 379

A.2 CUDA samples directory on Windows 10 380

D.1 Normal scalar and AVX2 eight-component vector multiplication 394

List of Figures xi

www.cambridge.org/9781108479530
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-47953-0 — Programming in Parallel with CUDA
Richard Ansorge 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

D.2 Visual Studio with ICC installed 395

E.1 16-bit pattern corresponding to AC05 in hexadecimal 403

E.2 IEEE 32-bit floating-point format 405

G.1 Interpretation of 2D array index as Morton and row-major order 432

G.2 2D array addresses in Morton and row-major order 432

xii List of Figures

www.cambridge.org/9781108479530
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-47953-0 — Programming in Parallel with CUDA
Richard Ansorge 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Tables

1.1 CUDA built-in variables page 20

2.1 Flynn’s taxonomy 23

2.2 Kernel launch configurations for maximum occupancy 38

2.3 Features of GPU generations from Kepler to Ampere 45

2.4 Possible combinations of const and restrict for pointer arguments 57

3.1 Member functions for CG objects 76

3.2 Additional member functions for tiled thread blocks 80

3.3 Warp vote and warp match intrinsic functions 90

3.4 The warp shuffle functions 91

3.5 Return values from warp shuffle functions 92

3.6 Behaviour of synchronisation functions 92

3.7 Results from deadlock kernel in Example 3.8 96

4.1 Convergence rates for the stencil2D kernel 115

4.2 Accuracy of stencil2D for arrays of size 1024� 1024 119

4.3 Results from cascade method using 4-byte floats and arrays of size 1024� 1024 123

4.4 Performance of 3D kernels for a 256� 256� 256 array 125

4.5 Performance of filter9PT kernels on an RTX 2070 GPU 134

5.1 Maximum sizes for CUDA textures 151

5.2 Performance of Examples 5.1–5.3 on an RTX 2070 GPU 153

5.3 Performance of affine3D kernel using an RTX 2070 GPU 165

6.1 Times required for random number generators using an RTX 2070 GPU 197

6.2 Random number distribution functions in C++ and CUDA 197

7.1 CUDA stream and event management functions 210

7.2 C++ <threads> library 226

7.3 Results from asyncDiskIO example using 1 GB data sets 232

7.4 API functions needed for creation of CUDA graphs via capture 238

8.1 Coordinate ranges for PET simulation 246

8.2 Performance of event generators 285

9.1 CUDA device management functions 297

9.2 Values of the CUDA cudaMemcpyKind flag used with

cudaMemcpy functions 299

9.3 CUDA host memory allocation functions 301

9.4 Timing results for CUDA memory management methods 313

9.5 Additional timing measurements using NVPROF 313

xiii

www.cambridge.org/9781108479530
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-47953-0 — Programming in Parallel with CUDA
Richard Ansorge 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

9.6 MPI version history 314

9.7 Core MPI functions 316

9.8 Additional MPI functions 320

10.1 Tuning the number of thread blocks for the gpulog program 345

11.1 CUDA warp matrix functions 360

11.2 Tensor cores supported data formats and tile dimensions 366

11.3 Tensor core performance 366

Appendix Tables

A.1 NVIDIA GPU generations, 2007–2021 375

A.2 NVIDIA GPUs from Kepler to Ampere 376

A.3 Evolution of the CUDA toolkit 378

B.1 Atomic functions 383

D.1 Evolution of the SIMD instruction set on Intel processors 394

E.1 Intrinsic types in C++ (for current Intel PCs) 404

G.1 The CX header files 411

G.2 IO functions supplied by cxbinio.h 416

G.3 Possible flags used in cudaTextureDesc 424

xiv List of Tables

www.cambridge.org/9781108479530
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-47953-0 — Programming in Parallel with CUDA
Richard Ansorge 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Examples

1.1 cpusum single CPU calculation of a sin integral page 2

1.2 ompsum OMP CPU calculation of a sin integral 4

1.3 gpusum GPU calculation of a sin integral 7

2.1 Modifications to Example 1.3 to implement thread-linear addressing 29

2.2 gpu_sin kernel alternative version using a for loop 30

2.3 grid3D using a 3D grid of thread blocks 31

2.4 grid3D_linear thread-linear processing of 3D array 34

2.5 reduce0 kernel and associated host code 41

2.6 reduce1 kernel using thread-linear addressing 44

2.7 reduce2 kernel showing use of shared memory 46

2.8 reduce3 kernel permitting non-power of two thread blocks 48

2.9 reduce4 kernel with explicit loop unrolling 49

2.10 shared_example kernel showing multiple array allocations 52

2.11 hostmult0 matrix multiplication on host CPU 54

2.12 hostmult1 showing use of restrict keyword 56

2.13 gpumult0 kernel simple matrix multiplication on the GPU 58

2.14 gpumult1 kernel using restrict keyword on array arguments 60

2.15 gpumult2 kernel using lambda function for 2D array indexing 61

2.16 gputiled kernel: tiled matrix multiplication using shared memory 62

2.17 gputiled1 kernel showing explicit loop unrolling 65

2.18 Host code showing matrix multiplication using cuBLAS 66

3.1 reduce5 kernel using syncwarp for device of CC = 7 and higher 73

3.2 coop3D kernel illustrating use of cooperative groups with 3D grids 77

3.3 cgwarp kernel illustrating use of tiled partitions 79

3.4 reduce6 kernel using warp_shfl functions 81

3.5 reduce7 kernel using solely intra-warp communication 83

3.6 reduce8 kernel showing use of cg::reduce warp-level function 85

3.7 reduce7_vl kernel with vector loading 86

3.8 deadlock kernel showing deadlock on thread divergence 94

3.9 deadlock_coalesced revised deadlock kernel using coalesced groups 97

3.10 reduce7_vl_coal kernel which uses subsets of threads in each warp 98

3.11 reduce_coal_any_vl kernel using coalesced groups of any size 100

4.1 stencil2D kernel for Laplace’s equation 107

4.2 stencil2D_sm kernel, tiled shared memory version of stencil2d 112

xv

www.cambridge.org/9781108479530
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-47953-0 — Programming in Parallel with CUDA
Richard Ansorge 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

4.3 stencil9PT kernel generalisation of stencil2D using all eight nearest

neighbours 113

4.4 reduce_maxdiff kernel for finding maximum difference between two arrays 115

4.5 Modification of Example 4.1 to use array_max_diff 117

4.6 zoomfrom kernel for cascaded iterations of stencil2D 119

4.7 stencil3D kernels (two versions) 124

4.8 filter9PT kernel implementing a general 9-point filter 128

4.9 filter9PT_2 kernel using GPU constant memory for filter coefficients 130

4.10 filter9PT_3 kernel with vector loading to shared memory 131

4.11 sobel6PT kernel based on filter9PT_3 135

4.12 The device function a_less 136

4.13 median9 device function 137

4.14 batcher9 kernel for per-thread median of nine numbers 139

5.1 Bilinear and nearest device and host functions for 2D image interpolation 148

5.2 rotate1 kernel for image rotation and simple main routine 149

5.3 rotate2 kernel demonstrating image rotation using CUDA textures 151

5.4 rotate3 kernel for simultaneous image rotation and scaling 154

5.5 rotate4 kernel for processing RGBA images 157

5.6 rotate4CV with OpenCV support for image display 158

5.7 affine3D kernel used for 3D image transformations 163

5.8 interp3D function for trilinear interpolation 166

5.9 costfun_sumsq kernel: A modified version of affine3D 167

5.10 The struct paramset used for affine image registration 169

5.11 functor cost_functor for evaluation of image registration cost function 169

5.12 Simple host-based optimiser which uses cost_functor 171

5.13 Image registration main routine fragment showing iterative optimisation process 173

6.1 piH host calculation of π using random sampling 180

6.2 piH2 with faster host RNG 182

6.3 piOMP version 183

6.4 piH4 with cuRand Host API 186

6.5 piH5 with cuRand Host API and pinned memory 188

6.6 piH6 with cudaMemcpyAsync 188

6.7 piG kernel for calculation of π using the cuRand Device API 193

6.8 3D Ising model setup_randstates and init_spins kernels 200

6.9 3D Ising 2D model flip_spins kernel 201

6.10 3D Ising model main routine 203

7.1 Pipeline data processing 212

7.2 event1 program showing use of CUDA events with default stream 219

7.3 event2 program CUDA events with multiple streams 221

7.4 asyncDiskIO program support functions 227

7.5 asyncDiskIO program main routine 229

7.6 CUDA graph program 234

8.1 structs used in fullsim 248

8.2 voxgen kernel for PET event generation 249

8.3 ray_to_cyl device function for tracking gammas to cylinder 252

xvi List of Examples

www.cambridge.org/9781108479530
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-47953-0 — Programming in Parallel with CUDA
Richard Ansorge 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

8.4 find_spot kernel used to compress full_sim results 257

8.5 smPart object with key2lor and lor2key utility functions 260

8.6 smTab structure used for indexing the system matrix 261

8.7 forward_project kernel used for MLEM PET reconstruction 262

8.8 backward_project and rescale kernels 265

8.9 ray_to_cyl_doi and voxgen_doi device functions 271

8.10 ray_to_block device function 276

8.11 ray_to_block2 illustrating C++11 lambda function to reduce code

duplication 279

8.12 track_ray device function which handles calls to ray_to_block2 281

8.13 voxgen_block kernel for event generation in blocked PET detector 283

8.14 Richardson–Lucy FP and BP device functions 286

8.15 rl_deconv host function 288

9.1 Using multiple GPUs on single host 295

9.2 p2ptest kernel demonstrating P2P operations between two GPUs 299

9.3 Managed memory timing tests reduce_warp_vl kernel and main routine 303

9.4 Managed memory test 0 using cudaMalloc 305

9.5 Managed memory test 1 using cudaMallocHost 306

9.6 Managed memory test 3 using thrust for memory allocation 307

9.7 Managed memory test 5 using cudaHostMallocMapped 308

9.8 Managed memory test 6 using cudaMallocManaged 310

9.9 Extended versions of tests 1 and 5 312

9.10 Reduction using MPI 316

9.11 Compiling and running an MPI program in Linux 319

9.12 Use of mpialltoall to transpose a matrix 321

9.13 Results of matrix transposition program 323

10.1 gpulog program for evaluation of log(1+x) 326

10.2 Results of running gpulog on an RTX 2070 GPU 330

10.3 nvprof output for gpulog example 331

10.4 nvprof with cudaProfilerStart and Stop 332

10.5 Checking the return code from a CUDA call 348

10.6 Use of cuda-memcheck 355

11.1 matmulT kernel for matrix multiplication with tensor cores 361

11.2 matmulTS kernel for matrix multiplication with tensor cores and shared

memory 363

11.3 reduceT kernel for reduction using tensor cores 367

11.4 reduce_half_vl kernel for reduction using the FP16 data type 369

Appendix Examples

B.1 Use of atomicCAS to implement atomicAdd for ints 384

B.2 Use of atomicCAS to implement atomicAdd for floats 385

C.1 Build command generated by Visual Studio 387

D.1 Comparison of Intel ICC and VS compilers 395

D.2 Intel intrinsic functions for AVX2 397

List of Examples xvii

www.cambridge.org/9781108479530
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-47953-0 — Programming in Parallel with CUDA
Richard Ansorge 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

D.3 Multithreaded version of D.2 using OpenMP 399

D.4 gpusaxpy kernel for comparison with host-based versions 399

G.1 Header file cx.h, part 1 410

G.2 Header file cx.h, part 2 411

G.3 Header file cx.h, part 3 414

G.4 Use of cxbinio.h to merge a set of binary files 416

G.5 Header file cxbinio.h, part 1 418

G.6 Header file cxtimers.h 422

G.7 Header file cxtextures.h, part 1 425

G.8 Header file cxtextures.h, part 2 – class txs2D 426

G.9 Header file cxtextures.h, part 3 – class txs3D 428

G.10 Header file cxconfun.h 433

I.1 Iterators in C++ 442

xviii List of Examples

www.cambridge.org/9781108479530
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-47953-0 — Programming in Parallel with CUDA
Richard Ansorge 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Preface

This book has been primarily written for people who need lots of computing power,

including those engaged in scientific research who need this power to acquire, process,

analyse or model their data. People working with medical data who need to process ever-

larger data sets and more complicated image data are also likely to find this book helpful.

Complicated and demanding computations are something I have been doing for my entire

research career, firstly in experimental high-energy physics and more recently in various

applications of medical imaging. The advent of GPU computing is one of the most exciting

developments I have yet seen, and one reason for writing this book is to share that

excitement with readers.

It seems to be a corollary of Moore’s law that the demand for computing power increases

to always exceed what is currently available. Since the dawn of the PC age in the early

1980s, vendors have been providing supplementary cards to improve the speed of rendering

displays. These cards are now known as graphics processing units or GPUs, and, driven by

the demands of the PC gaming industry, they have become very powerful computing engines

in their own right. The arrival in 2007 of the NVIDIA CUDA Toolkit for writing software

that exploits the power of GPUs for scientific applications was a game changer. Suddenly we

got a step up in computing power by a factor of 100 instead of the usual doubling every

18 months or so. Since then, the power of GPUs has also continued to grow exponentially

over time, following and even exceeding Moore’s law. Thus, knowing how to program

GPUs is just as useful today as it was in 2007. In fact, today, if you want to engage with

high-performance computing (HPC) perhaps on world-class supercomputers, knowing how

to use GPUs is essential.

Up till about 2002 the exponential growth in PC computing power was largely due to

increasing clock speeds. However, since then, clock speeds have plateaued at around

3.5 GHz, but the number of cores in a CPU chip has steadily increased. Thus, parallel

programming, which uses many cooperating cores running simultaneously to share the

computing load for a single task, is now essential to get the benefit from modern hardware.

GPUs take parallel programming to the next level, allowing thousands or even millions of

parallel threads to cooperate in a calculation.

Scientific research is difficult, and competitive, available computing power is often a

limiting factor. Speeding up an important calculation by a factor of, say, 200 can be a game

changer. A running time of a week is reduced to less than one hour, allowing for same-day

analysis of results. A running time of one hour would be reduced to 18 seconds, allowing for

exploration of the parameter space of complex models. A running time of seconds is reduced

xix

www.cambridge.org/9781108479530
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-47953-0 — Programming in Parallel with CUDA
Richard Ansorge 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

to milliseconds, allowing for interactive investigation of computer models. This book should

be particularly useful to individual researchers and small groups who can equip their own in-

house PCs with GPUs and get these benefits. Even groups with good access to large HCP

facilities would benefit from very rapid tools on their own desktop machine to explore

features of their results.

Of course, this book is also suitable for any reader interested in finding out more about

GPUs and parallel programming. Even if you already know a little about the subject, we

think you will find studying our coding style and choice of examples rewarding.

To be specific, this book is about programming NVIDIA GPUs in C++. I make no

apology for concentrating on a specific vendor’s products. Since 2007 NVIDIA have

become a dominant force in HPC and, more recently, also AI. This is due to both the cost-

effectiveness of their GPUs and, just as importantly, the elegance of the C++-like CUDA

language. I know that some scientific programming is still carried out in various dialects of

Fortran (including Fortran IV, a language I was very fond of in the early 1980s). But C++ is,

in my opinion, more expressive. Fans of Fortran may point out that there is a technical

problem with optimising C++ code using pointers, but that problem was overcome in C++11

with the introduction of the restrict keyword in C11. This keyword is also supported by

modern C++ compilers, and it is used in many of our examples.

The examples are one feature that distinguishes this book from other current books on

CUDA. Our examples have been carefully crafted from interesting real-world applications,

including physics and medical imaging, rather than the rather basic (and frankly boring)

problems often found elsewhere. Another difference between this book and others is that we

have taken a lot of care over the appearance of our code, using modern C++ where

appropriate, to reduce verbosity while retaining simplicity. I feel this is really important; in

my experience most scientific PhD students learn computing by modifying other people’s

code, and, while much of the CUDA example code currently circulating works, it is far from

elegant. This may be because in 2007 CUDA was launched as an extension to C, not C++,

and most of the original SDK examples were written in a verbose C style. It is unfortunate

that that style still persists in many of the online CUDA tutorials and books. The truth is that

CUDA always supported some C++, and nowadays CUDA fully supports up to C++17

(albeit with a few restrictions). In November 2019 the venerable “NVIDIA C Programmers

Guide” was renamed the “NVIDIA C++ Programmers Guide”, and, although then there was

no significant change to the content of the guide, it did signal a change in NVIDIA’s attitude

to their code, and since 2020 some more advanced uses of C++ have started to appear in the

SDK examples.

This book does not aim to teach you C++ from scratch; some basic knowledge of C++ is

assumed. However Appendix I discusses some of the C++ features used in our examples.

Modern C++ is actually something of a monster, with many newer features to support object-

orientated and other high-level programming styles. We do not use such features in this

book, as, in our view, they are not appropriate for implementing the algorithmic code we run

on GPUs. We also favour template functions over virtual functions.

To get the most out of our book, you will need access to a PC equipped with an NVIDIA

GPU supporting CUDA (many of them do). The examples were developed using a Windows

10 PC with a 4-core Intel CPU and an NVIDIA RTX 2070 GPU (costing £480 in 2019).

A Linux system is also fine, and all our examples should run without modification. Whatever

xx Preface

www.cambridge.org/9781108479530
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-47953-0 — Programming in Parallel with CUDA
Richard Ansorge 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

system you have, you will need a current version of the (free) NVIDIA CUDAToolkit. On

Windows, you will also need Visual Studio C++ (the free community version is fine). On

Linux, gcc or g++ is fine.

Sadly, we cannot recommend CUDA development on macOS, since Apple do not use

NVIDIA cards on their hardware and their drivers do not support recent NVIDIA cards. In

addition, NVIDIA have dropped support for macOS starting with their Toolkit version 11.0,

released in May 2020.

All of the example code can be downloaded from https://github.com/RichardAns/CUDA-

Programs. This site will also contain errata for the inevitable bugs that some of you may find

in my code. By the way, I welcome reader feedback about bugs or any other comments. My

email address is rea1@cam.ac.uk. The site will be maintained, and I also hope to add some

additional examples from time to time.

I hope you enjoy reading my book as much as I have enjoyed writing it.

Preface xxi

www.cambridge.org/9781108479530
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-47953-0 — Programming in Parallel with CUDA
Richard Ansorge 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

www.cambridge.org/9781108479530
www.cambridge.org

