
Cambridge University Press & Assessment
978-1-108-47953-0 — Programming in Parallel with CUDA
Richard Ansorge 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1

Introduction to GPU Kernels and Hardware

This book aims to teach you how to use graphics processing units (GPUs) and Compute

Unified Device Architecture (CUDA) to speed up your scientific or technical computing

tasks. We know from personal experience that the best way to learn to speak a new language

is to go to the relevant country and immerse yourself in the culture. Thus, we have chosen to

start our book with a complete working example of an interesting problem. We present three

versions of the code, firstly a standard Cþþ implementation for a single central processing

unit (CPU) thread, and secondly a multithread CPU version suitable for running on one or

two threads on each core for a multicore CPU, say between 4 and 16 threads. The third

version uses CUDA to run with thousands of simultaneous threads. We don’t expect readers

to immediately grasp all the nuances in the CUDA code – that is what the rest of this book is

for. Rather I hope you will see how similar the code is in all three versions and be

encouraged that GPU programming is not difficult and that it brings huge rewards.

After discussing these introductory examples, we go on to briefly recap the architecture of

traditional PCs and then introduce NVIDIA GPUs, introducing both their hardware features

and the CUDA programming model.

1.1 Background

A modern PC processor now has two, four or more computing CPU cores. To get the best

from such hardware, your code has to be able to run in parallel on all the resources available.

In favourable cases, tools like OpenMP or the Cþþ11 thread class defined in <thread>
allow you to launch cooperating threads on each of the hardware cores to get a potential

speed-up proportional to the number of cores. This approach can be extended to clusters of

PCs using communication tools like Message Passing Interface (MPI) to manage the inter-

PC communication. PC clusters are indeed now the dominant architecture in high-

performance computing (HPC). A cluster of at least 25 PCs with 8-core CPUs would be

needed to give a factor of 200 in performance. This is doable but expensive and incurs

significant power and management overheads.

An alternative is to equip your PC with a modern, reasonably high-specification GPU. The

examples in this book are based on an NVIDIA RTX 2070 GPU, which was bought for £480

in March 2019. With such a GPU and using NVIDIA’s Cþþ-like CUDA language, speed-

ups of 200 and often much more can be obtained on a single PC with really quite modest

effort. An additional advantage of the GPU is that its internal memory is about 10 times

faster than that of a typical PC, which is extremely helpful for problems limited by memory

bandwidth rather than CPU power.

1

www.cambridge.org/9781108479530
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-47953-0 — Programming in Parallel with CUDA
Richard Ansorge 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

At the heart of any CUDA program are one or more kernel functions, which contain the

code that actually runs on the GPU. These kernel functions are written in standard Cþþ with

a small number of extensions and restrictions. We believe they offer an exceptionally clear

and elegant way of expressing the parallel content of your programs. This is why we have

chosen CUDA for this book on parallel programming. One feature that distinguishes the

book from other books on CUDA is that we have taken great care to provide interesting real-

world problems for our CUDA examples. We have also coded these examples using features

of modern Cþþ to write straightforward but elegant and compact code. Most of the

presently available online tutorials or textbooks on CUDA use examples heavily based on

those provided by the NVIDIA Software Development Kit (SDK) examples. These

examples are excellent for demonstrating CUDA features but are mostly coded in a verbose,

outdated C style that often hides their underlying simplicity.1

To get the best from CUDA programs (and, indeed, any other programming language), it

is necessary to have a basic understanding of the underlying hardware, and that is the main

topic of this introductory chapter. But, before that, we start with an example of an actual

CUDA program; this is to give you a foretaste of what is to come – the details of the code

presented here are fully covered in later chapters.

1.2 First CUDA Example

Here is our first example showing what is possible with CUDA. The example uses the

trapezoidal rule to evaluate the integral of sin(x) from 0 to π, based on the sum of a large

number of equally spaced evaluations of the function in this range. The number of steps is

represented by the variable steps in the code. We deliberately choose a simple but

computationally expensive method to evaluate sin(x), namely, by summing the Taylor

series for a number of terms represented by the variable terms. The sum of the sin values is

accumulated, adjusted for end points and then scaled to give an approximation to the

integral, for which the expected answer is 2.0. The user can set the values of steps and

terms from the command line, and for performance measurements very large values are

used, typically 106 or 109 steps on the CPU or GPU, respectively, and 103 terms.

Example 1.1 cpusum single CPU calculation of a sin integral

02 #include <stdio.h>
03 #include <stdlib.h>
04 #include "cxtimers.h"

05 inline float sinsum(float x, int terms)
06 {

// sin(x) = x - x^3/3! + x^5/5! ...

07 float term = x; // first term of series

08 float sum = term; // sum of terms so far

09 float x2 = x*x;
10 for(int n = 1; n < terms; n++){

2 Introduction to GPU Kernels and Hardware

www.cambridge.org/9781108479530
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-47953-0 — Programming in Parallel with CUDA
Richard Ansorge 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

We will show three versions of this example. The first version, cpusum, is shown in

Example 1.1 and is written in straightforward Cþþ to run on a single thread on the host PC.

The second version, ompsum, shown in Example 1.2 adds two OpenMP directives to the

first version, which shares the loop over steps between multiple CPU threads shared

equally by all the host CPU cores; this illustrates the best we can do on a multicore PC

without using the GPU. The third version, gpusum, in Example 1.3 uses CUDA to share the

work between 109 threads running on the GPU.

Description of Example 1.1

This is a complete listing of the cpusum program; most of our subsequent listings will omit standard

headers to save space. Notice that we chose to use 4-byte floats rather than 8-byte doubles for the

critical function sinsum. The reasons for this choice are discussed later in this chapter, but briefly we

11 term *= -x2 / (float)(2*n*(2*n+1));
12 sum += term;
13 }
14 return sum;
15 }

16 int main(int argc, char *argv[])
17 {
18 int steps = (argc >1) ? atoi(argv[1]) : 10000000;
19 int terms = (argc >2) ? atoi(argv[2]) : 1000;

20 double pi = 3.14159265358979323;
21 double step_size = pi/(steps-1); // n-1 steps

22 cx::timer tim;
23 double cpu_sum = 0.0;
24 for(int step = 0; step < steps; step++){
25 float x = step_size*step;
26 cpu_sum += sinsum(x, terms); // sum of Taylor series

27 }
28 double cpu_time = tim.lap_ms(); // elapsed time

29 // Trapezoidal Rule correction

30 cpu_sum -= 0.5*(sinsum(0.0,terms)+sinsum(pi, terms));
31 cpu_sum *= step_size;
32 printf("cpu sum = %.10f,steps %d terms %d time %.3f ms\n",

cpu_sum, steps, terms, cpu_time);
33 return 0;
34 }

D:\ >cpusum.exe 1000000 1000

cpu sum = 1.9999999974,steps 1000000 terms 1000 time 1818.959 ms

1.2 First CUDA Example 3

www.cambridge.org/9781108479530
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-47953-0 — Programming in Parallel with CUDA
Richard Ansorge 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

wish to exploit limited memory bandwidth and to improve calculation speed. For scientific work, the

final results rarely need to be accurate to more than a few parts in 10‒8 (a single bit error in an IEEE

4-byte float corresponds to a fractional error of 2‒24 or ~6 � 10‒8). But, of course, we must be careful

that errors do not propagate as calculations progress; as a precaution the variable cpusum in the main

routine is an 8-byte double.

• Lines 2–4: Include standard headers; the header cxtimers.h is part of our cx utilities and

provides portable timers based on the Cþþ11 chrono.h library.

• Lines 5–15: This is the sinsum function, which evaluates sin(x) using the standard Taylor series.

The value of x in radians is given by the first input argument x, and the number of terms to be used is

given by the second input argument terms.

• Lines 7–9: Initialise some working variables; term is the value of the current term in the Taylor

series, sum is the sum of terms so far, and x2 is x2.

• Lines 10–13: This is the heart of our calculation, with a loop where successive terms are calculated

in line 11 and added to sum in line 12. Note that line 11 is the single line where all the time-

consuming calculations happen.

The main function of the remining code, in lines 16–35, is to organise the calculation in a straightfor-

ward way.

• Lines 18–19: Set the parameters steps and terms from optional user input.

• Line 21: Set the step size required to cover the interval between 0 and π using steps steps.

• Line 22: Declare and start the timer tim.

• Lines 23–27: A for loop to call the function sinsum steps times while incrementing x in to

cover the desired range. The results are accumulated in double cpusum.

• Line 28: Store the elapsed (wall clock) time since line 22 in cpu_time. This member function

also resets the timer.

• Lines 30–31: To get the integral of sin(x), we perform end-point corrections to cpusum and scale by

step_size (i.e. dx).

• Line 31: Print result, including time, is ms. Note that the result is accurate to nine significant figures

in spite of using floats in the function sinsum.

The example shows a typical command line launch requesting 106 steps and 103 terms in each step.

The result is accurate to nine significant figures. Lines 11 and 12 are executed 109 times in 1.8 seconds,

equivalent to a few GFlops/sec.

In the second version, Example 1.2, we use the readily available OpenMP library to share

the calculation between several threads running simultaneously on the cores of our

host CPU.

Example 1.2 ompsum OMP CPU calculation of a sin integral

02 #include <stdio.h>
03 #include <stdlib.h>
03.5 #include <omp.h>

04 #include "cxtimers.h"

4 Introduction to GPU Kernels and Hardware

www.cambridge.org/9781108479530
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-47953-0 — Programming in Parallel with CUDA
Richard Ansorge 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Description of Example 1.2

We just need to add three lines of code to the previous Example 1.1.

• Line 3.5: An extra line to include the header file omp.h. This has all the necessary definitions

required to use OpenMP.

• Line 19.5: An extra line to add the user-settable variable threads, which sets the number of CPU

threads used by OpenMP.

• Line 23.5: This is actually just a function call that tells openMP how many parallel threads to use. If

omitted, the number of hardware cores is used as a default. This function can be called more than

once if you want to use different numbers of cores in different parts of your code. The variable

threads is used here.

• Line 23.6: This line sets up the parallel calculation. It is a compile time directive (or pragma) telling

the compiler that the immediately following for loop is to be split into a number of sub-loops, the

range of each sub-loop being an appropriate part of the total range. Each sub-loop is executed in

parallel on different CPU threads. For this to work, each sub-loop will get a separate set of the loop

variables, x and omp_sum (n.b.: We use omp_sum instead of cpu_sum in this section of the

code). The variable x is set on each pass through the loop with no dependencies on previous passes,

so parallel execution is not problematic. However, that is not the case for the variable omp_sum,

05 float sinsum(float x, int terms)
06 {

. . . same as (a)
15 }

16 int main(int argc, char *argv[])
. . .

19.5 int threads = (argc >3) ? atoi(argv[3]) : 4;
. . .

23.5 omp_set_num_threads(threads); // OpenMP

23.6 #pragma omp parallel for reduction (+:omp_sum) // OpenMP

24 for(int step = 0; step < steps; step++){
. . .

32 printf("omp sum = %.10f,steps %d terms %d
time %.3f ms\n", omp_sum,steps,terms,cpu_time);

33 return 0;
34 }

D:\ >ompsum.exe 1000000 1000 4 (4 threads)
omp sum = 1.9999999978, steps 1000000 terms 1000 time 508.635 ms
D:\ >ompsum.exe 1000000 1000 8 (8 threads)
omp sum = 1.9999999978, steps 1000000 terms 1000 time 477.961 ms

1.2 First CUDA Example 5

www.cambridge.org/9781108479530
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-47953-0 — Programming in Parallel with CUDA
Richard Ansorge 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

which is supposed to accumulate the sum of all the sin(x) values. This means the sub-loops have

to cooperate in some way. In fact, the operation of summing a large number of variables, held either

in an array or during loop execution, occurs frequently and is called a reduce operation. Reduce is an

example of a parallel primitive, which is a topic we discuss in detail in Chapter 2. The key point is

that the final sum does not depend on the order of the additions; thus, each sub-loop can accumulate

its own partial sum, and these partial sums can then be added together to calculate the final value of

the sum_host variable after the parallel for. The last part of the pragma tells OpenMP that the

loop is indeed a reduction operation (using addition) on the variable omp_sum. OpenMP will add

the partial sums accumulated by each thread’s copy of omp_sum and place the final result into the

omp_sum variable in our code at the end of the loop.

• Line 32: Here we have simply modified the existing printf to also output the value of threads.

Two command line launches are shown at the end of this example, the first using four OMP threads

and the second using eight OMP threads.

The results of running ompsum on an Intel quad-core processor with hyper-threading are

shown at the bottom of the example using either four or eight threads. For eight threads the

speed-up is a factor of 3.8 which is a good return for little effort. Note using eight cores

instead of four for our PC means running two threads on each core which is supported by

Intel hyper-threading on this CPU; we see a modest gain but nothing like a factor of 2.

In Visual Studio Cþþ, we also have to tell the compiler that we are using OpenMP using

the properties dialog, as shown in Figure 1.1.

In the third version, Example 1.3, we use a GPU and CUDA, and again we parallelise the

code by using multiple threads for the loop in lines 24–27, but this time we use a separate

thread for each iteration of the loop, a total of 109 threads for the case shown here. The code

changes for the GPU computation are a bit more extensive than was required for OpenMP,

but as an incentive to continue reading, we will find that the speed-up is now a factor of

960 rather than 3.8! This dramatic gain is an example of why GPUs are routinely used in

HPC systems.

Figure 1.1 How to enable OpenMP in Visual Studio

6 Introduction to GPU Kernels and Hardware

www.cambridge.org/9781108479530
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-47953-0 — Programming in Parallel with CUDA
Richard Ansorge 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Example 1.3 gpusum GPU calculation of a sin integral

01 // call sinsum steps times using parallel threads on GPU

02 #include <stdio.h>
03 #include <stdlib.h>
04 #include "cxtimers.h" // cx timers

04.1 #include "cuda_runtime.h" // cuda basic

04.2 #include "thrust/device_vector.h" // thrust device vectors

05 __host__ __device__ inline float sinsum(float x, int terms)
06 {
07 float x2 = x*x;
08 float term = x; // first term of series

09 float sum = term; // sum of terms so far

10 for(int n = 1; n < terms; n++){
11 term *= -x2 / (2*n*(2*n+1)); // build factorial

12 sum += term;
13 }
14 return sum;
15 }

15.1 __global__ void gpu_sin(float *sums, int steps, int terms,
float step_size)

15.2 {
// unique thread ID

15.3 int step = blockIdx.x*blockDim.x+threadIdx.x;
15.4 if(step<steps){
15.5 float x = step_size*step;
15.6 sums[step] = sinsum(x, terms); // store sums

15.7 }
15.8 }

16 int main(int argc, char *argv[])
17 {

// get command line arguments

18 int steps = (argc >1) ? atoi(argv[1]) : 10000000;
19 int terms = (argc >2) ? atoi(argv[2]) : 1000;
19.1 int threads = 256;
19.2 int blocks = (steps+threads-1)/threads; // round up

20 double pi = 3.14159265358979323;
21 double step_size = pi / (steps-1); // NB n-1

// allocate GPU buffer and get pointer

21.1 thrust::device_vector<float> dsums(steps);
21.2 float *dptr = thrust::raw_pointer_cast(&dsums[0]);
22 cx::timer tim;

1.2 First CUDA Example 7

www.cambridge.org/9781108479530
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-47953-0 — Programming in Parallel with CUDA
Richard Ansorge 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Description of Example 1.3

This description is here for the sake of completeness. If you already know a bit of CUDA, it will make

sense. If you are new to CUDA, skip this description for now and come back later when you have read

our introduction to CUDA. At this point, the message to take away is that potentially massive speed-

ups can be achieved and that, to my eyes at least, the code is elegant, expressive and compact and the

coding effort is small.

The details of the CUDA methods used here are fully described later. However, for now you should

notice that much of the code is unchanged. CUDA is written in Cþþ with a few extra keywords; there

is no assembly to learn. All the details of the calculation are visible in the code. In this listing, line

numbers without dots are exactly the same lines in Example 1.1, although we use gpu instead of cpu
in some of the variable names.

• Lines 1–4: These include statements are the same as in Example 1.1.

• Line 4.1: This is the standard include file needed for all CUDA programs. A simple CUDA program

just needs this, but there are others that will be introduced when needed.

• Line 4.2: This include file is part of the Thrust library and provides support for thrust vectors on the

GPU. Thrust vector objects are similar to the std::vector objects in Cþþ, but note that CUDA

has separate classes for thrust vectors in CPU memory and in device memory.

• Lines 5–15: This is the same sinsum function used in Example 1.1; the only difference is that in

line 5 we have decorated the function declaration with __host__ and __device__, which tell

the compiler to make two versions of the function, one suitable for code running on the CPU (as

before) and one for code running on the GPU. This is a brilliant feature of CUDA: literally the same

code can be used on both the host and device, removing a major source of bugs.2

• Lines 15.1–15.8: These define the CUDA kernel function gpu_sin that replaces the loop over

steps in lines 24–27 of the original program. Whereas OpenMP uses a small number of host

threads, CUDA uses a very large number of GPU threads. In this case we use 109 threads, a separate

thread for each value of step in the original for loop. Kernel functions are declared with the

keyword __global__ and are launched by the host code. Kernel functions can receive arguments

from the host but cannot return values – hence they must be declared as void. Arguments can either

22.1 gpu_sin<<<blocks,threads>>>(dptr,steps,terms,
(float)step_size);

22.2 double gpu_sum =
thrust::reduce(dsums.begin(),dsums.end());

28 double gpu_time = tim.lap_ms(); // get elapsed time

29 // Trapezoidal Rule Correction

30 gpu_sum -= 0.5*(sinsum(0.0f,terms)+sinsum(pi, terms));
31 gpu_sum *= step_size;
32 printf("gpusum %.10f steps %d terms %d

time %.3f ms\n",gpu_sum,steps,terms,gpu_time);
33 return 0;
34 }

D:\ >gpusum.exe 1000000000 1000

gpusum = 2.0000000134 steps 1000000000 terms 1000 time 1882.707 ms

8 Introduction to GPU Kernels and Hardware

www.cambridge.org/9781108479530
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-47953-0 — Programming in Parallel with CUDA
Richard Ansorge 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

be passed to kernels by value (good for single numbers) or as pointers to previously allocated device

memory. Arguments cannot be passed by reference, as in general the GPU cannot directly access

host memory.

Line 15.3 of the kernel function is especially noteworthy, as it encapsulates the essence of parallel

programming in both CUDA and MPI. You have to imagine that the code of the kernel function is

running simultaneously for all threads. Line 15.3 contains the magic formula used by each particular

instance of an executing thread to figure out which particular value of the index step that it

needs to use. The details of this formula will be discussed later in Table 1.1. Line 15.4 is an out-of-

range check, necessary because the number of threads launched has been rounded up to a multiple

of 256.

• Lines 15.5 and 15.6 of the kernel: These correspond to the body of the for loop (i.e. lines 25–26 in

Example 1.1). One important difference is that the results are stored in parallel to a large array in the

global GPU memory, instead of being summed sequentially to a unique variable. This is a common

tactic used to avoid serial bottlenecks in parallel code.

• Lines 16–19 of main: These are identical to the corresponding lines in Example 1.1.

• Lines 19.1–19.2: Here we define two new variables, threads and blocks; we will meet these

variables in every CUDA program we write. NVIDIA GPUs process threads in blocks. Our

variables define the number of threads in each block (threads) and the number of thread blocks

(blocks). The value of threads should be a multiple of 32, and the number of blocks can be

very large.

• Lines 20–21: These are the same as in Example 1.1.

• Line 21.1: Here we allocate an array dsum in GPU memory of size steps. This works like

std::vector except we use the CUDA thrust class. The array will be initialised to zero on

the device.

• Line 21.2: Here we create a pointer dptr to the memory of the dsum vector. This is a suitable

argument for kernel functions.

• Lines 22.1–22.2: These two lines replace the for loop in lines 23–27 of Example 1.1, which called

sinsum steps times sequentially. Here line 22.1 launches the kernel gpu_sin, which uses

steps separate GPU threads to call sinsum for all the required x values in parallel. The individual

results are stored in the device array dsums. In line 22.2 we call the reduce function from the thrust

library to add all the values stored in dsums, and then copy the result from the GPU back to the host

variable dsum.3

• Lines 28–34: These remaining lines are identical to Example 1.1; notice that the host version of our

sinsum function is used in line 30.

As a final comment we notice that the result from the CUDA version is a little less

accurate than either of the host versions. This is because the CUDAversion uses 4-byte floats

throughout the calculation, including the final reduction step, whereas the host versions use

an 8-byte double to accumulate the final result sum over 106 steps. Nevertheless, the CUDA

result is accurate to eight significant figures, which is more than enough for most

scientific applications.

The sinsum example is designed to require lots of calculation while needing very little

memory access. Since reading and writing to memory are typically much slower than

performing calculations, we expect both the host CPU and the GPU to perform at their best

efficiencies in this example. In Chapter 10, when we discuss profiling, we will see that the

GPU is delivering several TFlops/sec in the example. While the sinsum function used in this

example is not particularly interesting, the brute force integration method used here could be

1.2 First CUDA Example 9

www.cambridge.org/9781108479530
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-47953-0 — Programming in Parallel with CUDA
Richard Ansorge 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

used for any calculable function spanned by a suitable grid of points. Here we used 109 points,

which is enough to sample a function on a 3D Cartesian grid with 1000 points along each of

the three coordinate axes. Being able to easily scale up to 3D versions of problems that can

only be reasonably done in 2D on a normal PC is another great reason to learn about CUDA.

In order to write effective programs for your GPU (or CPU), it is necessary to have some

feeling for the capabilities of the underlying hardware, and that is our next topic. So, after

this quick look at CUDA code and what it can do, it is time to go back to the beginning and

remind ourselves of the basics of computer hardware.

1.3 CPU Architecture

Correct computer code can be written by simply following the formal rules of the particular

language being used. However, compiled code actually runs on physical hardware, so it is

helpful to have some insights into hardware constraints when designing high-performance

code. This section provides a brief overview of the important features in conventional CPUs

and GPUs. Figure 1.2 shows a simplified sketch of the architecture of a traditional CPU.

Briefly the blocks shown are:

• Master Clock: The clock acts like the conductor of an orchestra, but it plays a very boring

tune. Clock-pulses at a fixed frequency are sent to each unit causing that unit to execute its

next step. The CPU processing speed is directly proportional to this frequency. The first

IBM PCs were launched in 1981 with a clock-frequency of 2.2 MHz; the frequency then

doubled every three years or so peaking at 4 GHz in 2002. It turned out that 4 GHz was the

fastest that Intel was able to produce reliability, because the power requirement (and hence

heat generated) is proportional to frequency. Current Intel CPUs typically run at ~3.5 GHz

with a turbo boost to 4 GHz for short periods.

• Memory: The main memory holds both the program data and the machine code instruc-

tions output by the compiler from your high-level code. In other words, your program code

is treated as just another form of data. Data from memory can be read from memory by

either the load/save unit or the program fetch unit but normally only the load/save unit can

write data back to the main memory.4

Figure 1.2 Simplified CPU architecture

10 Introduction to GPU Kernels and Hardware

www.cambridge.org/9781108479530
www.cambridge.org

