Cambridge University Press 978-1-108-47952-3 — Thinking Probabilistically Ariel Amir Table of Contents <u>More Information</u>

Contents

Acknowledgments

1

2

3

4

Intro	oduction	1
1.1	Probabilistic Surprises	5
1.2	Summary	12
1.3	Exercises	13
Ran	dom Walks	15
2.1	Random Walks in 1D	16
2.2	Derivation of the Diffusion Equation for Random Walks in Arbitrary	
	Spatial Dimension	18
2.3	Markov Processes and Markov Chains	24
2.4	Google PageRank: Random Walks on Networks as an Example	
	of a Useful Markov Chain	25
2.5	Relation between Markov Chains and the Diffusion Equation	30
2.6	Summary	32
2.7	Exercises	32
Lanç	jevin and Fokker–Planck Equations and Their Applications	39
3.1	Application of a Discrete Langevin Equation to a Biological Problem	45
3.2	The Black–Scholes Equation: Pricing Options	51
3.3	Another Example: The "Well Function" in Hydrology	60
3.4	Summary	62
3.5	Exercises	63
Esca	pe Over a Barrier	67
4.1	Setting Up the Escape-Over-a-Barrier Problem	70
4.2	Application to the 1D Escape Problem	71
4.3	Deriving Langer's Formula for Escape-Over-a-Barrier in Any	
	Spatial Dimension	73
4.4	Summary	79
4.5	Exercises	79

Cambridge University Press 978-1-108-47952-3 — Thinking Probabilistically Ariel Amir Table of Contents <u>More Information</u>

Cont	ents	
Nois	a	Q1
5 1	G Talagraph Naisa: Dawar Speatrum Associated with a Two Level System	01 02
5.2	From Telegraph Noise to $1/f$ Noise via the Superposition of Many Two-	00
	Level-Systems	88
5.3	Power Spectrum of a Signal Generated by a Langevin Equation	89
5.4	Parseval's Theorem: Relating Energy in the Time and Frequency Domain	90
5.5	Summary	92
5.6	Exercises	92
Gene	eralized Central Limit Theorem and Extreme Value Statistics	96
6.1	Probability Distribution of Sums: Introducing the Characteristic Function	98
6.2	Approximating the Characteristic Function at Small Frequencies	
	for Distributions with Finite Variance	99
6.3	Central Region of CLT: Where the Gaussian Approximation Is Valid	100
6.4	Sum of a Large Number of Positive Random Variables: Universal	
	Description in Laplace Space	103
6.5	Application to Slow Relaxations: Stretched Exponentials	106
6.6	Example of a Stable Distribution: Cauchy Distribution	108
6.7	Self-Similarity of Running Sums	109
6.8	Generalized CLT via an RG-Inspired Approach	110
6.9	Exploring the Stable Distributions Numerically	118
6.10	RG-Inspired Approach for Extreme Value Distributions	120
0.11	Summary	127
6.12	Exercises	128
Anor	nalous Diffusion	133
7.1	Continuous Time Random Walks	134
7.2	Lévy Flights: When the Variance Diverges	137
7.3	Propagator for Anomalous Diffusion	138
7.4	Back to Normal Diffusion	139
7.5	Ergodicity Breaking: When the Time Average and the Ensemble	
	Average Give Different Results	139
7.6	Summary	140
1.1	Exercises	141
Rand	lom Matrix Theory	145
8.1	Level Repulsion between Eigenvalues: The Birth of RMT	145
8.2	Wigner's Semicircle Law for the Distribution of Eigenvalues	149
8.3	Joint Probability Distribution of Eigenvalues	155
8.4	Ensembles of Non-Hermitian Matrices and the Circular Law	162
8.5	Summary	179
8.6	Exercises	180
	Cont Nois 5.1 5.2 5.3 5.4 5.5 5.6 Gene 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 Anor 7.1 7.2 7.3 7.4 7.5 7.6 7.7 Rance 8.1 8.2 8.3 8.4 8.5 8.6	Contents Noise 5.1 Telegraph Noise: Power Spectrum Associated with a Two-Level-System 5.2 From Telegraph Noise to 1/f Noise via the Superposition of Many Two-Level-Systems 5.3 Power Spectrum of a Signal Generated by a Langevin Equation 5.4 Parseval's Theorem: Relating Energy in the Time and Frequency Domain 5.5 Summary 5.6 Exercises Ceneralized Central Limit Theorem and Extreme Value Statistics 6.1 Probability Distribution of Sums: Introducing the Characteristic Function 6.2 Approximating the Characteristic Function at Small Frequencies for Distributions with Finite Variance 6.3 Central Region of CLT: Where the Gaussian Approximation Is Valid 6.4 Sum of a Large Number of Positive Random Variables: Universal Description in Laplace Space 6.5 Application to Slow Relaxations: Stretched Exponentials 6.6 Example of a Stable Distribution: Cauchy Distribution 6.7 Self-Similarity of Running Sums 6.8 Generalized CLT via an RG-Inspired Approach 6.9 Exploring the Stable Distributions Numerically 6.10 RG-Inspired Approach for Extreme Value Distributions 6.11 Summary 6.12

CAMBRIDGE

Cambridge University Press 978-1-108-47952-3 — Thinking Probabilistically Ariel Amir Table of Contents <u>More Information</u>

		Contents	vii
9 P	ercolation Theory		184
9	1 Percolation and Emergent Phenomena		184
9	2 Percolation on Trees – and the Power of Recu	irsion	193
9	3 Percolation Correlation Length and the Size of	of the Largest Cluster	195
9	4 Using Percolation Theory to Study Random I	Resistor Networks	197
9	5 Summary		202
9	6 Exercises		203
Appendix A	Review of Basic Probability Concepts and Commo	n Distributions	207
A	.1 Some Important Distributions		208
A	.2 Central Limit Theorem		210
Appendix B	A Brief Linear Algebra Reminder, and Some Gauss	ian Integrals	211
E	.1 Basic Linear Algebra Facts		211
E	2 Gaussian Integrals		212
Appendix C	Contour Integration and Fourier Transform Refres	her	214
C	.1 Contour Integrals and the Residue Theorem		214
C	2 Fourier Transforms		214
Appendix D	Review of Newtonian Mechanics, Basic Statistical	Mechanics, and Hessians	217
Γ	.1 Basic Results in Classical Mechanics		217
Γ	.2 The Boltzmann Distribution and the Partition	Function	218
Ι	.3 Hessians		218
Appendix E	Minimizing Functionals, the Divergence Theorem,	and Saddle-Point	
	Approximations		220
E	1 Functional Derivatives		220
E	2 Lagrange Multipliers		220
E	3 The Divergence Theorem (Gauss's Law)		220
E	4 Saddle-Point Approximations		221
Appendix F	Notation, Notation		222
ŀ	eferences		225
I	dex		232