Thinking Probabilistically

Probability theory has diverse applications in a plethora of fields, including physics, engineering, computer science, chemistry, biology, and economics. This book will familiarize students with various applications of probability theory, stochastic modeling, and random processes, using examples from all these disciplines and more.

The reader learns via case studies and begins to recognize the sort of problems that are best tackled probabilistically. The emphasis is on conceptual understanding, the development of intuition, and gaining insight, keeping technicalities to a minimum. Nevertheless, a glimpse into the depth of the topics is provided, preparing students for more specialized texts while assuming only an undergraduate-level background in mathematics. The wide range of areas covered – never before discussed together in a unified fashion – includes Markov processes and random walks, Langevin and Fokker–Planck equations, noise, generalized central limit theorem and extreme values statistics, random matrix theory, and percolation theory.

Ariel Amir is a Professor at Harvard University. His research centers on the theory of complex systems.

CAMBRIDGE

Cambridge University Press 978-1-108-47952-3 — Thinking Probabilistically Ariel Amir Frontmatter <u>More Information</u>

Thinking Probabilistically

Stochastic Processes, Disordered Systems, and Their Applications

ARIEL AMIR

Harvard University, Massachusetts

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781108479523 DOI: 10.1017/9781108855259

© Ariel Amir 2021

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2021

Printed in the United Kingdom by TJ Books Ltd. Padstow, Cornwall

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Amir, Ariel, 1981- author.

Title: Thinking probabilistically : stochastic processes, disordered systems, and their applications / Ariel Amir.

Description: Cambridge, United Kingdom ; New York, NY : Cambridge University Press, 2021. | Includes bibliographical references and index.

Identifiers: LCCN 2020019651 (print) | LCCN 2020019652 (ebook) | ISBN 9781108479523 (hardback) | ISBN 9781108789981 (paperback) | ISBN 9781108855259 (epub)

Subjects: LCSH: Probabilities–Textbooks. | Stochastic processes–Textbooks. | Order-disorder models–Textbooks.

Classification: LCC QA273 .A548 2021 (print) | LCC QA273 (ebook) | DDC 519.2–dc23 LC record available at https://lccn.loc.gov/2020019651 LC ebook record available at https://lccn.loc.gov/2020019652

ISBN 978-1-108-47952-3 Hardback ISBN 978-1-108-78998-1 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Acknowledgments

1

2

3

4

Introduction		1
1.1	Probabilistic Surprises	5
1.2	Summary	12
1.3	Exercises	13
Ran	dom Walks	15
2.1	Random Walks in 1D	16
2.2	Derivation of the Diffusion Equation for Random Walks in Arbitrary	
	Spatial Dimension	18
2.3	Markov Processes and Markov Chains	24
2.4	Google PageRank: Random Walks on Networks as an Example	
	of a Useful Markov Chain	25
2.5	Relation between Markov Chains and the Diffusion Equation	30
2.6	Summary	32
2.7	Exercises	32
Lanç	jevin and Fokker–Planck Equations and Their Applications	39
3.1	Application of a Discrete Langevin Equation to a Biological Problem	45
3.2	The Black–Scholes Equation: Pricing Options	51
3.3	Another Example: The "Well Function" in Hydrology	60
3.4	Summary	62
3.5	Exercises	63
Esca	ipe Over a Barrier	67
4.1	Setting Up the Escape-Over-a-Barrier Problem	70
4.2	Application to the 1D Escape Problem	71
4.3	Deriving Langer's Formula for Escape-Over-a-Barrier in Any	
	Spatial Dimension	73
4.4	Summary	79
4.5	Exercises	79

CAMBRIDGE

Cambridge University Press 978-1-108-47952-3 — Thinking Probabilistically Ariel Amir Frontmatter <u>More Information</u>

vi	Cont	ents		
_			81	
5	Noise			
	5.1 5.2	Telegraph Noise: Power Spectrum Associated with a Two-Level-System From Telegraph Noise to $1/f$ Noise via the Superposition of Many Two-	83	
		Level-Systems	88	
	5.3	Power Spectrum of a Signal Generated by a Langevin Equation	89	
	5.4	Parseval's Theorem: Relating Energy in the Time and Frequency Domain	90	
	5.5	Summary	92	
	5.6	Exercises	92	
6	Gene	eralized Central Limit Theorem and Extreme Value Statistics	96	
	6.1	Probability Distribution of Sums: Introducing the Characteristic Function	98	
	6.2	Approximating the Characteristic Function at Small Frequencies		
		for Distributions with Finite Variance	99	
		Central Region of CLT: Where the Gaussian Approximation Is Valid	100	
	6.4	Sum of a Large Number of Positive Random Variables: Universal		
		Description in Laplace Space	103	
	6.5	Application to Slow Relaxations: Stretched Exponentials	106	
	6.6	Example of a Stable Distribution: Cauchy Distribution	108	
	6.7	Self-Similarity of Running Sums	109	
	6.8	Generalized CLT via an RG-Inspired Approach	110	
	6.9	Exploring the Stable Distributions Numerically	118	
		RG-Inspired Approach for Extreme Value Distributions	120 127	
		Summary Exercises	127	
	0.12	Exercises	128	
7		nalous Diffusion	133	
	7.1	Continuous Time Random Walks	134	
		Lévy Flights: When the Variance Diverges	137	
	7.3	Propagator for Anomalous Diffusion	138	
	7.4	Back to Normal Diffusion	139	
	7.5	Ergodicity Breaking: When the Time Average and the Ensemble	120	
	76	Average Give Different Results	139	
	7.6 7.7	Summary Exercises	140	
	1.1	Exercises	141	
8		lom Matrix Theory	145	
	8.1	Level Repulsion between Eigenvalues: The Birth of RMT	145	
	8.2	Wigner's Semicircle Law for the Distribution of Eigenvalues	149	
	8.3	Joint Probability Distribution of Eigenvalues	155	
	8.4	Ensembles of Non-Hermitian Matrices and the Circular Law	162	
	8.5	Summary	179	
	8.6	Exercises	180	

CAMBRIDGE

Cambridge University Press 978-1-108-47952-3 — Thinking Probabilistically Ariel Amir Frontmatter <u>More Information</u>

	Contents	V
9 Per	colation Theory	184
9.1	Percolation and Emergent Phenomena	184
9.2	Percolation on Trees – and the Power of Recursion	19
9.3	Percolation Correlation Length and the Size of the Largest Cluster	19
9.4	Using Percolation Theory to Study Random Resistor Networks	19
9.5	~	202
9.6	Exercises	20
Appendix A R	eview of Basic Probability Concepts and Common Distributions	20
	Some Important Distributions	203
A.2	2 Central Limit Theorem	210
Appendix B A	Brief Linear Algebra Reminder, and Some Gaussian Integrals	21
B.1	Basic Linear Algebra Facts	21
B.2	Gaussian Integrals	212
Appendix C C	ontour Integration and Fourier Transform Refresher	214
C.1	Contour Integrals and the Residue Theorem	214
C.2	Fourier Transforms	214
Appendix D R	eview of Newtonian Mechanics, Basic Statistical Mechanics, and Hessians	21
D.1	Basic Results in Classical Mechanics	21'
D.2	The Boltzmann Distribution and the Partition Function	218
D.3	Hessians	213
	inimizing Functionals, the Divergence Theorem, and Saddle-Point	
	pproximations	220
	Functional Derivatives	220
	Lagrange Multipliers	220
	The Divergence Theorem (Gauss's Law)	220
E.4	Saddle-Point Approximations	22
Appendix F N	otation, Notation	222
Rej	<i>Terences</i>	22:
Ind	ex	232

Acknowledgments

I am indebted to the students of Harvard course APMTH 203 for their patience and perseverance as the course materials were developed, and I am hugely grateful to all of my teaching fellows along the years for their hard work: Sarah Kostinksi, Po-Yi Ho, Felix Wong, Siheng Chen, Pétur Rafn Bryde, and Jiseon Min. Much of the contents of the Appendices draws on their helpful notes.

I thank Eli Barkai, Stas Burov, Ori Hirschberg, Yipei Guo, Jie Lin, David Nelson, Efi Shahmoon, Pierpaolo Vivo, and Ahmad Zareei for numerous useful discussions and comments on the notes. Christopher Bergevin had excellent suggestions for Chapter 2, and Julien Tailleur for Chapter 3. Ori Hirschberg and Eli Barkai had many important comments and useful suggestions regarding Chapter 6. I thank Grace Zhang, Satya Majumdar, and Fernando L. Metz for a careful reading of Chapter 8. I am grateful to Martin Z. Bazant and Bertrand I. Halperin for important comments on Chapter 9. I thank Terry Tao for allowing me to adapt the discussion of Black–Scholes in Chapter 3 from his insightful blog. I also thank Dr. Yasmine Meroz and Dr. Ben Golub for giving guest lectures in early versions of the course. Finally, I am grateful to Simon's coffee shop for providing reliably excellent coffee, which was instrumental to the writing of this book.

I dedicate this book to Lindy, Maayan, Tal, and Ella, who keep my feet on the ground and a smile on my face.