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1 Introduction

I know too well that these arguments from probabilities are impostors, and unless

great caution is observed in the use of them they are apt to be deceptive – in

geometry, and in other things too
(from Plato’s Phaedo)

The purposes of this book are to familiarize you with a broad range of examples

where randomness plays a key role, develop an intuition for it, and get to the level

where you may read a recent research paper on the subject and be able to understand

the terminology, the context, and the tools used. This is in a sense the “organizing

principle” behind the various chapters: In all of them we are driven by applications

where probability plays a fundamental role, and leads to exciting and often intriguing

phenomena. There are many relations between the chapters, both in terms of the

mathematical tools and in some cases in terms of the physical processes involved,

but one chapter does not follow from the previous one by necessity or hinge on it –

rather, the idea is to present a rich repertoire of problems involving randomness,

giving the reader a good basis in a broad range of fields . . . and to have fun

along the way.

Randomness leads to new phenomena. In a classic paper, Anderson (1972) coined

the phrase “more is different”. It is also true that “stochastic is different” . . . The book

will give you some tools to understand phenomena associated with disordered systems

and stochastic processes. These will include percolation (relevant for polymers,

gels, social networks, epidemic spreading); random matrix theory (relevant for

understanding the statistics of nuclear and atomic levels, model certain properties

of ecological systems and more); random walks and Langevin equations (pertinent

to understanding numerous applications in physics, chemistry, cell biology as well

as finance). The emphasis will be on understanding the phenomena and quantifying

them. Note that while all of the applications considered here build on random-

ness in a fundamental way, the collection of topics covered is far from repre-

sentative of the vast realm of applications that hinge on probability theory. (For

instance, two important fields not touched on here are statistical inference and

chemical kinetics).
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2 Introduction

What mathematical background is assumed? The book assumes a solid background

in undergraduate-level mathematics: primarily calculus, linear algebra, and basic

probability theory. For instance, when a PDE (partial differential equation) is derived,

we will not dwell too much on its solution if standard techniques are utilized, as will

be the case when using standard results of linear algebra (e.g., that a Hermitian matrix

admits unitary diagonalization). Similarly, if Lagrange multipliers are needed to

perform a minimization, familiarity with them will be assumed. We will occasionally

evaluate integrals using contour integration, though a motivated reader will be

able to follow the vast majority of the book without a background in complex

analysis. A summary/refresher of some of the techniques utilized is provided in

Appendices A–E. A concise mathematical physics textbook that may come in handy

for a reader who needs a further reminder of the techniques is by Mathews and

Walker (1970). For readers who need to fill in a gap in their mathematical background

(e.g., complex analysis), two excellent textbooks that cover the vast majority of the

mathematical background assumed here (and much more) are by Hassani (2013) and

Arfken, Weber, and Harris (2012). Further references for particular subject matter

(probability theory, linear algebra, etc.) are provided in the Appendices.

To Prove or Not to Prove … That Is the Question It is also important to emphasize

what this book is not about: The derivations we will present will not be mathematically

rigorous. What a physicist considers a proof is not what a mathematician would! In

many cases, the physicist’s proof has to be later “redone” by a mathematician,

sometimes decades later. However, for various real-world applications the advantages

of a rigorous proof might not be justifiable. Quoting Feynman, “If there is something

very slightly wrong in our definition of the theories, then the full mathematical rigor

may convert these errors into ridiculous conclusions.” To paraphrase Feynman – in

many cases, there is no need to solve a model exactly, since the connection between

the model and the reality is only crude, and we made numerous (far more important)

approximations in deriving the model equations (von Neumann put this more bluntly:

“There’s no sense in being precise when you don’t even know what you’re talking

about”). Similar expectations will hold for the exercises at the end of each chapter,

which also consist of numerical simulations in cases where analytic derivations are

impossible or outside the scope of the book.

Furthermore, the notation and jargon we will follow will be those used by physicists

in research papers – which is sometimes different from those used by mathematicians

(for instance, we will refer to the object mathematicians call the “probability density

function” as the “probability distribution”, and use the physicists’ notation for it –

p(x)). We will often not specify the precise mathematical conditions under which the

derivations can be made rigorous, and we will shamelessly use algebraic manipula-

tions without justifying them – such as using Fubini’s theorem without ensuring the

function is absolutely integrable. All functions will be assumed to be differentiable as

many times as necessary. We will also be using Dirac’s δ-function in the derivations,
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Introduction 3

and creatures such as the Fourier transform of eiωt . For a physicist, these objects

should be interpreted under the appropriate regularization – a δ-function should be

thought of as having a finite width, but much smaller than any other relevant scale in

the problem. (Physicists are relatively used to this sort of regularization – for instance,

in computing Green functions using contour integration the contour often has to be

shifted by an amount ±iǫ to make the results convergent). If the final result depends

on this finite width – then the treatment using δ-function is inadequate and should be

revisited. But as long as the final results are plausible (e.g., in some cases we can com-

pare with numerics) we will not re-derive them in a rigorous fashion. The advantage of

this non-rigorous approach is that it seems to be the one more relevant to applications,

which are the focus of this book. Experiments and real-life phenomena do not conform

to the mathematical idealization we make anyhow, and von Neuman’s quote comes to

mind again. In other words, the more important thing for explaining physical reality is

to have a good model rather than specify the conditions rigorously (a related quote is

attributed to Kolmogorov: “Important is not what is rigorous but what is true”). That

is not to take anything away from the beautiful work of mathematicians – it is just not

the point of this book.

For some students, this non-rigorous approach could prove challenging. When the

rigorously inclined student encounters a situation where they feel the formal manipula-

tions are unjustified, it may prove useful for them to construct counter-examples, e.g.,

functions which do not obey the theorem, and then to consider the physical meaning

of these “good” and “bad” functions – which class is relevant in which physical

situations, and what we learn from the scenarios where the derivation fails. Our goal

here is not to undermine the importance of rigorous mathematics, but to provide a non-

rigorous introduction to the plethora of natural sciences phenomena and applications

where stochasticity plays a central role.

How to read this book A few words on the different topics covered and their rela-

tions. Chapter 1 is introductory, and gives some elementary examples where basic

probability theory leads to perhaps counter-intuitive results. One of the examples,

Benford’s law, touches on some of the topics of Chapter 6 (dealing with heavy-

tailed distributions, falling off as a power-law). Chapter 2 presents random walks

and diffusion, and provides the foundational basis for many of the other chapters.

Chapter 3 directly builds on the simple random walks introduced in Chapter 2,

and discusses the important concepts of Langevin and Fokker–Planck equations.

The first part of the chapter “builds” the formalism (albeit in a non-technical

and non-rigorous fashion), while the second part of the chapter deals with three

applications of the ideas (cell size control – an application in biology, the Black–

Scholes equation – one in economics, and finally a short application in hydrology).

A reader may skip these applications without affecting the readability of the rest

of the materials. Similarly, Chapter 4 (dealing with the “escape over a barrier”

problem) can be viewed as a sophisticated application of the ideas of Chapter 3,

with far-reaching implications. It certainly puts the materials of the previous chap-

ters to good use, but again can be skipped without affecting the flow. Chapter 5

www.cambridge.org/9781108479523
www.cambridge.org


Cambridge University Press
978-1-108-47952-3 — Thinking Probabilistically
Ariel Amir 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

4 Introduction

is of particular importance to those dealing with signals and noise, and builds on ideas

introduced in earlier chapters (e.g., the Markov chains of Chapter 2) to analyze the

power spectrum (i.e., noise characteristics) of several paradigmatic systems (including

white noise, telegraph noise, and 1/f noise). Chapter 6 derives a plethora of basic

results dealing with the central limit theorem, its limitations and generalizations,

and the related problem of “extreme value distributions”. It is more technical (and

lengthier) than previous chapters. Chapter 7, dealing with anomalous diffusion, can be

viewed as an advanced application of the materials of Chapter 6, “reaping the fruits” of

the labor of the previous chapter. In a sense, it extends the results of the random walks

of Chapter 2 to scenarios where some of the assumptions of Einstein’s approach do

not hold – and have been shown to be relevant to many systems in physics and biology

(reminiscent of the quote, “everything not forbidden is compulsory” . . .) Chapter 8

deals with random matrices and some of their applications. It is the most technical

chapter in this book, and is mostly independent from the chapter on percolation theory

that follows. Moreover, a large fraction of Chapter 8 deals with a non-trivial derivation

of the “circular law” associated with non-Hermitian matrices, and a reader can skip

directly to Chapter 9 if they prefer. (Note that most of this lengthy derivation “unzips”

the short statements made in the original paper, perhaps giving students a glimpse into

the compact nature in which modern research papers are written!) The final chapter on

percolation theory touches on fundamental concepts such as emergent behavior, the

renormalization group, and critical phenomena. Throughout the chapters, numerical

simulations in MATLAB are provided when relevant.∗ Often, results are easy to obtain

numerically but challenging to derive analytically, highlighting the importance of the

former as a supplement to analytic approaches. Finally, note that occasionally “boxes”

are used where we emphasize an idea or concept by placing the passage between two

solid lines.

Note that each chapter deals with a topic on which many books and many hundreds

of papers have been written. This book merely opens a narrow window into this vast

literature. The references throughout the book are also by no means comprehensive,

and we apologize for not including numerous relevant references – this text is not

intended to be a comprehensive guide to the literature! When possible, we refer to

textbooks on the topic that provide a more in-depth discussion as well as a more

extensive list of references.

A comment on the problems in this book (and their philosophy) The problems at the

end of each chapter are a little different from those encountered in most textbooks. The

phrasing is often laconic or even vague. Students might complain that “the problem is

not hard – I just cannot figure out what it is!” This actually reflects the typical situation

in many real-life problems, be it in academia or industry, where figuring out how to

set up the problem is often far more challenging than solving the problem itself.

The Google PageRank algorithm described in Chapter 2 is a nice example where

simple, well-known linear algebra can be highly influential when used correctly in

the appropriate context. The situation might be frustrating at times, when trying to

∗ The codes can be downloaded here: https://github.com/arielamir/ThinkingProbablistically
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1.1 Probabilistic Surprises 5

prove something without being given in advance the precise conditions for the results

to hold – yet this mimics the situation encountered so often in research. Indeed,

many of the original problems arose from the author’s own research experience or

from (often recent) research papers, and as such reflect “natural” problems rather

than contrived exercises. In other cases, the problems supplement the materials of the

main chapter and essentially “teach” a classic theorem (e.g., Pólya’s theorem in

Chapter 2) through hands-on experience and calculations (and with the proper

guidance to make it manageable, albeit occasionally challenging). We made a

conscious choice to make the problems less defined and avoid almost categorically

problems of the form “Prove that X takes the form of Y under the assumptions Z.”

The philosophy behind this choice is to allow this book (and the problems) to serve

as a bridge between introducing the concepts and doing research on related topics.

The typical lack of such bridges is nicely articulated by Williams (2018), which was

written by a graduate student based on his own first-hand experience in making the

leap from undergraduate course work to graduate-level physics research. Trickier

problems will be denoted by a * (hard) or ** (very hard), based on the previous

experience of students tackling these problems.

1.1 Probabilistic Surprises

Randomness can lead to counter-intuitive effects and to novel phenomena

Research has shown that our intuition for probability is far from perfect. Problems

associated with probability are often easy to formulate but hard to solve, as we shall

see throughout this book. Many problems have an element of randomness to them

(sometimes due to our imperfect knowledge of the system) and may be best examined

via a probablisitic model.

As a “warmup,” let us consider several elementary examples, where the naive

expectation (of most people) fails, while a simple calculation gives a counterintuitive

result. Some excellent examples that we will not consider – since they are perhaps

too well known – include the Monty–Hall problem (http://en.wikipedia.org/wiki/

MontyHallproblem), and the false-negative paradox (http://en.wikipedia.org/wiki/

Falsepositiveparadox).

1.1.1 Example: Does the Fraction of a Rare Disease in a Population Remain

Fixed Over Time? (Hardy–Weinberg Equilibrium)

Consider a rare disease associated with some recessive allele (i.e., the individual

must have two copies of this gene, one from each parent, in order to be sick). The

population consists of three genotypes: individuals with two copies of the dominant

gene (who will not be sick), which we will denote by AA; those with one copy of

the recessive gene, aA; and those with two copies of it aa, who will be sick. Each

of the parents gives one of the alleles to the offspring, with equal probability. This

is schematically described in the table below, describing the various possibilities for
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6 Introduction

the offspring’s genotype (and their probabilities in brackets) given the mother’s and

father’s genotypes.

mother \ father aa AA aA

aa aa(1) aA(1) aA
(

1
2

)

,aa
(

1
2

)

AA aA(1) AA(1) AA
(

1
2

)

,aA
(

1
2

)

aA aa
(

1
2

)

,aA
(

1
2

)

AA
(

1
2

)

,aA
(

1
2

)

aa
(

1
4

)

,AA
(

1
4

)

,aA
(

1
2

)

We shall denote the relative abundance of genotypes AA, aA, and aa by p, 2q, and r ,

respectively (thus, by definition p + 2q + r = 1). Surprisingly, at the beginning of the

twentieth century, it was not clear what controls the relative abundance of the three

types: What are the possible stable states? What are the dynamics starting from a

generic initial condition?

On surprises If you haven’t seen this problem before, you might have some prior

intuition or guesses as to what the results might be. For instance, it might be reasonable

to expect that if a disease corresponding to a recessive gene is initially very rare in the

population, then over time it should go extinct. This is, in fact, not the case, as we shall

shortly see. In that sense, you may call the results “surprising.” But perhaps a reader

with better intuition would have guessed the correct result a priori, and will not find the

result surprising at all – in that sense, the notion of a “surprising result” in science is, in

fact, a rather unscientific concept. In retrospect, mathematical results cannot really be

surprising . . . Nevertheless, the scientific process itself is often driven by intuition and

lacks the clarity of thought that is the luxury of hindsight, and for this reason scientists

do often invoke the concept of a “surprising result.” Moreover, this often reflects

our expectations from prior null models that we are familiar with. For example, in

Section 1.1.2 we will show a simple model suggesting an exponential distribution

of the time intervals between subsequent buses reaching a station. Armed with this

insight, we can say that the results described in Chapter 8, finding a distribution of time

intervals between buses that is not only non-exponential but in fact non-monotonic,

are surprising! But this again illustrates that our definition of surprising very much

hinges on our prior knowledge, and perhaps a more (or less) mathematically sophisti-

cated reader would not find the latter finding surprising. For a related paper, see also

Amir, Lemeshko, and Tokieda (2016b).

Remarkably, it was not until 1908 that the mathematician G. H. Hardy sent a letter

to the editor of Science magazine clearing up this issue (Hardy 1908). His letter

became a cornerstone of genetics (known today as the Hardy–Weinberg equilibrium, a

name also crediting the independent contributions of Wilhelm Weinberg). The model

and calculations are extremely simple. Assuming a well-mixed population in its nth

generation, let us compute the abundance of the three genotypes in the n + 1 genera-

tion, assuming for simplicity random mating between the three genotypes. Using the
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1.1 Probabilistic Surprises 7

table, it is straightforward to work out that the equations relating the fractions in one

generation to the next are:

pn+1 = p2 + 2pq + q2 = (p + q)2. (1.1)

rn+1 = r2 + 2qr + q2 = (r + q)2. (1.2)

2qn+1 = 2q2 + 2pq + 2qr + 2pr = 2(p + q)(r + q). (1.3)

Note that we dropped the n subscript on the RHS (the abbreviation we will use for

“right-hand side” through the text) to make the notation less cumbersome. As a sanity

check, you can check that these sum up to (p + 2q + r)2 = 1.

If we reach a stationary (“equilibrium”) state, then pn+1 = pn, etc. This implies

that

pr = q2. (1.4)

Hence q is the geometric mean of p and r at equilibrium. Is this a sufficient condition

for equilibrium? The answer is yes, since the first equation becomes

p = p2 + 2pq + pr = p(p + 2q + r) = p (1.5)

(and the second equation has the same structure – can you see why there is no need to

check the third?).

Finally, how long would it take us to reach this state starting from general initial

conditions p1, q1, and r1? Note that qn+1 = (p + q)(r + q), hence:

q2
2 = (p1 + q1)2(r1 + q1)2 = p2r2.

So equilibrium is precisely established after a single generation! Importantly, in sharp

contrast to the biologists’ prior belief, it can have an arbitrarily small – but stable –

value of r . Things are different, in fact, in the subtle variant of this problem studied in

Problem 1.2.

1.1.2 Example: Bus Timings, Random vs. Ordered

In bus station A, buses are regularly sent off every 6 minutes. In station B, on the other

hand, the manager throws a die every minute and sends off a bus if they get a “6.”

Q: How many buses leave per day? What is the average time between buses?

It is clear that on average 60 · 24/6 = 240 buses will be sent out, in both cases. Hence

the average time between buses is 6 minutes in both cases (in case A, the time between

buses is, of course, always 6 minutes).

Q: If a person arrives at a random time to the bus station, how many minutes do

they have to wait on average?

For simplicity, let us assume that the person arrived just after a potential bus arrival

event.
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8 Introduction

What should we expect? In case A, it is equally probable for the waiting time to

be 1,2 . . . ,6 minutes, hence the average waiting time is 3.5 minutes. Try to think

about case B. Given that the total number of buses per day and the average time

between buses is identical, you might expect that the average waiting time would be

identical too. This is not the case, as we shall shortly show: In case B, the average

time between buses is also 6 minutes, but, perhaps counterintuitively, this is also the

average waiting time!

To see this, let us assume that we got to the station at a random time. The probability

to wait a minute until the next one is 1/6. The probability for a 2 minute wait is 5
6

1
6

,

and more generally the probability to wait n minutes, pn, is

pn = (1 − p)n−1p (1.6)

(with p = 1/6).

Therefore, the average waiting time is

〈T 〉 =
∑

pnn =

∞
∑

n=1

n(1 − p)n−1p. (1.7)

Without the n in front, this would be a geometric series. To deal with it, define

q ≡ 1 − p, and note that

∞
∑

n=0

qn = 1/(1 − q). (1.8)

Taking the derivative with respect to q gives us the following relation:

∞
∑

n=0

nqn−1 = 1/(1 − q)2. (1.9)

Therefore, our sum in Eq. (1.7) equals

〈T 〉 = p/(1 − q)2 = (1/6)/(1/6)2 = 6. (1.10)

Looking back, this makes perfect sense, since the fact that a bus just left does not

“help” us regarding the next one – the process has no memory. Interestingly, this

example is relevant for the physics of a (classical) model of electron transport, known

as the Drude model – where our calculations imply that an additional factor of “2”

should not be present in the final result.

What about the distribution of time gaps? It is given by Eq. (1.6), and is therefore

exponential. This process is a simple example of a random process, and in the con-

tinuum limit where the time interval is vanishingly small this is known as a Poisson

process (see Appendix A for the related Poisson distribution, describing the probabil-

ity distribution of the number of events occurring within a fixed time interval).
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A note on terminology Throughout this book, we will follow the physicists’ terminol-

ogy of referring to a probability density function (pdf) as a “probability distribution,”

and referring to a “cumulative distribution” for the cumulative distribution function

(cdf). Moreover, for a real random variable X we will denote the probability dis-

tribution by p(x), rather than the notation fX often used in mathematics. Further

notational details are provided in Appendix F.

What about real buses? An online blog analyzed the transportation system in London

and showed that it is Poissonian (i.e., corresponds to the aforementioned random

bus scheduling) (http://jasmcole.com/2015/03/02/two-come-along-at-once/). This

implies that the system is not optimal (since we can get buses coming in “bunches,” as

well as very long waits). On the other hand, later in the book (Chapter 8) we will see

a case where buses were not Poissonian but also not uniform – the distribution was

very different from exponential (the Poisson case) but was not narrowly peaked (the

uniform case). Interestingly, it vanished at zero separation – buses “repelled” each

other. It was found to be well described by the results of random matrix theory, which

we shall cover in Chapter 8.

1.1.3 Bertrand’s Paradox: The Importance of Specifying the Ensemble

Consider an equilateral triangle inscribed in a circle. Suppose a chord of the circle is

chosen at random. What is the probability that the chord is longer than a side of the

triangle?

We shall now show three “reasonable” methods for choosing a random chord,

which will give us 1/2, 1/3, and 1/4 as an answer, respectively. This is known as

“Bertrand’s paradox” (Bertrand 1907).

Method 1: Choosing the endpoints. Let us choose the two endpoints of the chord at

random. The chord is longer than the side of the triangle in 1/3 of the cases – as is

illustrated in Fig. 1.1

Method 2: Choosing the midpoint. What about if we choose a point randomly and

uniformly in the circle, and define it to be the middle of the chord? From the

Figure 1.1 Method 1: Choosing the endpoints of the chord.
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Figure 1.2 Method 2: Choosing the chord midpoint randomly and uniformly in the circle.

Figure 1.3 Method 3: Defining the chord midpoint by choosing a point along the radius.

construction of Fig. 1.2, we see that when the point falls within the inner circle

the chord will be long enough. Its radius is R sin(30) = R/2, hence its area is 1/4

times that of the outer circle – therefore, the probability will be 1/4.

Method 3: Choosing a point along the radius to define the midpoint. If we choose the

chord midpoint along the radius of the circle with uniform probability, the chord

will be long enough when the chosen point is sufficiently close to the center – it is

easy to see that the triangle bisects the radius, so in this case the probability will be

1/2 (see Fig. 1.3).

Importantly, there is no right or wrong answer – but the point is that one has to

describe the way through which the “random” choice is made to fully describe the

problem.

1.1.4 Benford’s Law: The First Digit Distribution

Another related example where the lack of specification of the random ensemble leads

to rather counterintuitive results is associated with Benford’s law (named after Frank

Benford, yet discovered by Simon Newcomb a few decades beforehand!). It is an

empirical observation that for many “natural” datasets the distribution of the first digit

is very far from uniform, see Fig. 1.4. The formula that the data is compared with is

one where the relative abundance of the digit d is proportional to

pd ∝ log(1 + 1/d) (1.11)
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