Contents

Preface

1

2

page	X1

Part	Matrix Methods	1
Vecto	r and Matrix Algebra	3
1.1	Introduction	5
1.2	Definitions	10
1.3	Algebraic Operations	13
1.4	Systems of Linear Algebraic Equations – Preliminaries	15
1.5	Systems of Linear Algebraic Equations – Solution Methods	26
1.6	Vector Operations	37
1.7	Vector Spaces, Bases, and Orthogonalization	42
1.8	Linear Transformations	51
1.9	Note on Norms	55
1.10	Briefly on Bases	57
Exerc	vises	58
Algeb	raic Eigenproblems and Their Applications	64
2.1	Applications of Eigenproblems	64
2.2	Eigenvalues and Eigenvectors	69
2.3	Real Symmetric Matrices	78
2.4	Normal and Orthogonal Matrices	91
2.5	Diagonalization	95
2.6	Systems of Ordinary Differential Equations	100
2.7	Schur Decomposition	121
2.8	Singular-Value Decomposition	123
2.9	Polar Decomposition	135
2.10	QR Decomposition	138
2.11	Briefly on Bases	141
2.12	Reader's Choice	141
Exercises		142

viii	Conte	ents		
3	Diffe	rential Eigenproblems and Their Applications	155	
	3.1	Function Spaces, Bases, and Orthogonalization	157	
	3.2	Eigenfunctions of Differential Operators	162	
	3.3	Adjoint and Self-Adjoint Differential Operators	179	
	3.4	Partial Differential Equations – Separation of Variables	189	
	3.5	Briefly on Bases	209	
	Exer	cises	210	
4	Vector and Matrix Calculus			
	4.1	Vector Calculus	219	
	4.2	Tensors	231	
	4.3	Extrema of Functions and Optimization Preview	237	
	4.4	Summary of Vector and Matrix Derivatives	249	
	4.5	Briefly on Bases	250	
	Exer	cises	250	
5	Analy	ysis of Discrete Dynamical Systems	253	
	5.1	Introduction	255	
	5.2	Phase-Plane Analysis – Linear Systems	256	
	5.3	Bifurcation and Stability Theory – Linear Systems	260	
	5.4	Phase-Plane and Stability Analysis – Nonlinear Systems	273	
	5.5	Poincaré and Bifurcation Diagrams – Duffing Equation	286	
	5.6	Attractors and Periodic Orbits - Saltzman-Lorenz Model	299	
	Part	II Numerical Methods	313	
6	Com	putational Linear Algebra	315	
	6.1	Introduction to Numerical Methods	317	
	6.2	Approximation and Its Effects	326	
	6.3	Systems of Linear Algebraic Equations – Direct Methods	334	
	6.4	Systems of Linear Algebraic Equations – Iterative Methods	346	
	6.5	Numerical Solution of the Algebraic Eigenproblem	355	
	6.6	Epilogue	371	
	Exer	cises	372	
7	Numerical Methods for Differential Equations			
	7.1	General Considerations	377	
	7.2	Formal Basis for Finite-Difference Methods	384	
	7.3	Formal Basis for Spectral Numerical Methods	391	
	7.4	Formal Basis for Finite-Element Methods	396	
	7.5	Classification of Second-Order Partial Differential Equations	398	
	Exer	cises	405	

Cambridge University Press 978-1-108-47909-7 — Matrix, Numerical, and Optimization Methods in Science and Engineering Kevin W. Cassel Table of Contents <u>More Information</u>

			Contents	ix
8	Finite-	Difference Methods for Boundary-Value Problems		407
	8.1	Illustrative Example from Heat Transfer		407
	8.2	General Second-Order Ordinary Differential Equation		412
	8.3	Partial Differential Equations		415
	8.4	Direct Methods for Linear Systems		420
	8.5	Iterative (Relaxation) Methods		426
	8.6	Boundary Conditions		430
	8.7	Alternating-Direction-Implicit (ADI) Method		434
	8.8	Multigrid Methods		437
	8.9	Compact Higher-Order Methods		444
	8.10	Treatment of Nonlinear Terms		448
	Exerci	ises		453
9	Finite-	Difference Methods for Initial-Value Problems		466
	9.1	Introduction		466
	9.2	Single-Step Methods for Ordinary Differential Equations		467
	9.3	Additional Methods for Ordinary Differential Equations		481
	9.4	Partial Differential Equations		483
	9.5	Explicit Methods		485
	9.6	Numerical Stability Analysis		489
	9.7	Implicit Methods		496
	9.8	Boundary Conditions – Special Cases		501
	9.9	Treatment of Nonlinear Convection Terms		502
	9.10	Multidimensional Problems		508
	9.11	Hyperbolic Partial Differential Equations		515
	9.12	Coupled Systems of Partial Differential Equations		517
9.	9.13	Parallel Computing		518
	9.14	Epilogue		522
	Exerci	ises		522
	Part I	II Least Squares and Optimization		527
10	Least-	Squares Methods		529
	10.1	Introduction to Optimization		529
	10.2	Least-Squares Solutions of Algebraic Systems of Equation	ns	531
	10.3	Least-Squares with Constraints		538
	10.4	Least-Squares with Penalty Functions		541
	10.5	Nonlinear Objective Functions		542
	10.6	Conjugate-Gradient Method		543
	10.7	Generalized Minimum Residual (GMRES) Method		551
	10.8	Summary of Krylov-Based Methods		555
	Exerci	• •		556

Cambridge University Press 978-1-108-47909-7 — Matrix, Numerical, and Optimization Methods in Science and Engineering Kevin W. Cassel Table of Contents <u>More Information</u>

Х	Contents	
11	Data Analysis: Curve Fitting and Interpolation	560
	11.1 Linear Regression	560
	11.2 Polynomial Regression	568
	11.3 Least-Squares Regression as an Overdetermined System	570
	11.4 Least Squares with Orthogonal Basis Functions – Fourier Series	572
	11.5 Polynomial Interpolation	578
	11.6 Spline Interpolation	579
	11.7 Curve Fitting and Interpolation of Multidimensional Data	581
	11.8 Linear Regression Using Singular-Value Decomposition	584
	11.9 Least-Squares Regression as State Estimation	586
	11.10 Definitions of the Residual	589
	Exercises	590
12	Optimization and Root Finding of Algebraic Systems	594
	12.1 Introduction	594
	12.2 Nonlinear Algebraic Equations – Root Finding	595
	12.3 Optimization	604
	12.4 Nonlinear Unconstrained Optimization	605
	12.5 Numerical Methods	610
	12.6 Nonlinear Constrained Optimization	615
	12.7 Linear Programming – Formulation	620
	12.8 Linear Programming – Simplex Method	627
	12.9 Optimal Control	634
	Exercises	637
13	Data-Driven Methods and Reduced-Order Modeling	642
	13.1 Introduction	642
	13.2 Projection Methods for Continuous Systems	644
	13.3 Galerkin Projection and Reduced-Order Modeling for Continuous	
	Systems	652
	13.4 Projection Methods for Discrete Systems	659
	13.5 Galerkin Projection and Reduced-Order Modeling for Discrete System	s 664
	13.6 Proper-Orthogonal Decomposition (POD) for Continuous Data	668
1 1 1 1 <i>R</i>	13.7 Proper-Orthogonal Decomposition (POD) for Discrete Data	675
	13.8 Extensions and Alternatives to POD	690
	13.9 System Identification	696
	13.10 Epilogue	697
	References	699
	Index	703