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1 Vector and Matrix Algebra

Mathematics is the music of reason.

The world of ideas which [mathematics] discloses or illuminates, the contemplation of

divine beauty and order which it induces, the harmonious connexion of its parts, the

infinite hierarchy and absolute evidence of the truths with which it is concerned, these,

and such like, are the surest grounds of the title of mathematics to human regard, and

would remain unimpeached and unimpaired were the plan of the universe unrolled like

a map at our feet, and the mind of man qualified to take in the whole scheme of creation

at a glance. (James Joseph Sylvester)

Approximately 50 years before publication of this book, Neil Armstrong was the first

human to step foot on the Moon and – thankfully – return safely to Earth. While

the Apollo 11 mission that facilitated this amazing accomplishment in July of 1969

was largely symbolic from a scientific perspective, it represented the culmination of

a decade of focused effort to create, develop, test, and implement a whole host of

new technologies that were necessary to make such a feat possible. Many of these

technologies are now fully integrated into modern life.

The march to the Moon during the 1960s was unprecedented in modern technolog-

ical history for its boldness, aggressive time frame, scale, scientific and technological

developments, and ultimate success. The state of the art in space travel in the early

1960s was to put a human in orbit 280 kilometers (km) (175 miles) above the Earth

for several hours. It was in this context on September 12, 1962, that President Kennedy

boldly – and some argued foolishly – set the United States on a course “to go to the

Moon in this decade and do the other things, not because they are easy, but because

they are hard.” The Moon is 385,000 km (240,000 miles) from Earth – orbital flights

were a mere baby step toward this aggressive goal. It was not that the technology was

available and we simply needed to marshal the financial resources and political will to

accomplish this bold task, it was not clear if the technology could be developed at all,

let alone in the aggressive time frame proposed.

This problem appeared straightforward on paper. Newton’s laws of motion had

been articulated nearly 300 years before, and they had served remarkably well as the

basis for an uncountable array of terrestrial applications and cosmological predic-

tions. But to successfully land an object the size of a small truck on a moving body

385,000 km from its origin presented a whole host of issues. The mathematical model
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4 Vector and Matrix Algebra

in the form of Newton’s laws could not be fully trusted to accurately navigate such

extreme distances. Nor could noisy and inaccurate measurements made on board the

spacecraft as well as back on Earth be relied upon either. How could a variety of

measurements, each with various levels of reliability and accuracy, be combined with

mathematical predictions of the spacecraft’s trajectory to provide the best estimate of

its location and determine the necessary course corrections to keep it on its precise

trajectory toward its target – and back?

The obstacle was not that the equations were not correct, or that they could not

be accurately calculated; the problem was that there were numerous opportunities for

the spacecraft to deviate slightly from its intended path. Each of these could have led

to large deviations from the target trajectory over such large distances. A mechanism

was required to correct the trajectory of the spacecraft along its route, but that was

the easy part. How does one determine precisely where you are when so far from,

well, anything? How does one adjust for the inevitable errors in making such a state

estimate?

While so-called filtering techniques were available at the time, they were either

not accurate enough for such a mission or too computationally intensive for on-board

computers. It turned out that the methodology to address just such a predicament had

been published by Kalman (1960) only 18 months before Kennedy’s famous speech.

In fact, a small group of researchers from NASA Ames Research Center had been in

contact with Kalman in the late 1950s to discuss his new method and how it could be

used for midcourse navigation correction of the Apollo spacecraft.1 Kalman’s original

method applied to linear estimation problems, whereas NASA scientists were faced

with a nonlinear problem. The modifications made to the original approach came to be

known as the “extended Kalman filter,” which remains one of the dominant approaches

for treating nonlinear estimation problems today.

While on-board Kalman filtering ended up only being used as a backup to ground-

based measurements for midcourse navigation between the Earth and Moon, it was

found to be essential for the rendezvous problem. The three Apollo astronauts traveled

together in the Command Module until the spacecraft entered lunar orbit. The Lunar

Module then detached from the Command Module with Neil Armstrong and Buzz

Aldrin aboard, while Michael Collins stayed in the Command Module as it remained

in lunar orbit. After their historic landing on the Moon’s surface, the Lunar Module

then had to take off from the lunar surface and rendezvous with the Command Module

in lunar orbit.2 This was the most difficult navigational challenge of the entire mission.

Because both spacecraft were moving, it presented a unique navigational challenge to

facilitate their rendezvous with the necessary precision to dock the two spacecraft

and reunite the three history-making astronauts. Kalman filtering was used to ingest

the model predictions and on-board measurements to obtain relative state estimates

1 NASA Technical Memorandum 86847, “Discovery of the Kalman Filter as a Practical Tool for

Aerospace and Industry,” by L. A. McGee and S. F. Schmidt (1985).
2 The picture on the cover of the book was taken by Michael Collins in the Command Module just before

the rendezvous was executed.
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1.1 Introduction 5

between the two orbiting spacecraft. The calculations were performed redundantly on

both the Lunar and Command Modules’ guidance computers for comparison.3

Before we can introduce state estimation in Section 11.9, there is a great deal of

mathematical machinery that we need to explore. This includes material from this

book on matrix methods as well as variational methods (see, for example, Cassel

2013). There are numerous additional examples of new technologies and techniques

developed for the specific purpose of landing a man on the Moon – many of them

depending upon the matrix, numerical, and optimization methods that are the subjects

of this text.

1.1 Introduction

For most scientists and engineers, our first exposure to vectors and matrices is in the

context of mechanics. Vectors are used to represent quantities, such as velocity or

force, that have both a magnitude and direction in contrast to scalar quantities, such

as pressure and temperature, that only have a magnitude. Likewise, matrices generally

first appear when stress and strain tensors are introduced, once again in a mechanics

setting. At first, such threedimensional vectors and matrices appear to be simply a

convenient way to tabulate such quantities in an orderly fashion. In large part, this is

true. In contrast to many areas of mathematics, for which certain operations would not

be possible without it, vectors and matrices are not mathematical elements of neces-

sity; rather they are constructs of convenience. It could be argued that there is not a

single application in this book that requires matrix methods. However, this ubiquitous

framework not only supplies a convenient way of representing large and complex data

sets, it also provides a common formalism for their analysis; the topics contained in

this book would be far more complex and confusing without the machinery of matrix

methods.

The benefit of first being exposed to vectors and matrices through mechanics is

that we naturally develop a strong geometric interpretation of them from the start.

Because it appeals to our visual sensibilities, therefore, we hardly realize that we are

learning the basics of linear algebra. In such a mechanics context, however, there is

no reason to consider vectors larger than three dimensions corresponding to the three

directions in our various coordinate systems that represent physical space. Unfortu-

nately, our visual interpretation of vectors and matrices does not carry over to higher

dimensions; we cannot even sketch a vector larger than three dimensions let alone

impose a meaningful geometric interpretation. This is when linear algebra seems to

lose its moorings in physically understandable reality and is simply a fun playground

for mathematicians.

3 MIT Report E-2411, “Apollo Navigation, Guidance, and Control: A Progress Report,” by D. G. Hoag

(1969). MIT Report R-649, “The Apollo Rendezvous Navigation Filter Theory, Description and

Performance” (Volume 1), by E. S. Muller Jr. and P. M. Kachmar (1970).
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6 Vector and Matrix Algebra

Given its roots in algebra, it is not surprising that mathematicians have long viewed

linear algebra as an essential weapon in their arsenal. For those of us who have

benefited from a course in linear algebra taught by a mathematician, complementing

the geometrically rich and physically practical exposure in mechanics with the for-

mal framework of operations and methods provides a strong, and frankly necessary,

foundation for research and practice in almost all areas of science and engineering.

However, the mathematician’s discussion of “singular matrices,” “null spaces,” and

“vector bases” often leaves us with the notion that linear algebra, beyond our initial

mechanics-driven exposure, is of very little relevance to the scientist or engineer. On

the contrary, the formalism of linear algebra provides the mathematical foundation for

three of the most far-reaching and widely applicable “applications” of matrix methods

in science and engineering, namely dynamical systems theory, numerical methods,

and optimization. Together they provide the tools necessary to solve, analyze, and

optimize large-scale, complex systems of practical interest in both research and indus-

trial practice. As we will see, even the analysis and prediction of continuous systems

governed by differential equations ultimately reduces to solution of a matrix problem.

This is because more often than not, numerical methods must be used, which convert

the continuous governing equations into a discrete system of algebraic equations.

Although “linear” algebra is strictly speaking a special case of algebra,4 it is in

many ways a dramatic extension of the algebra that we learn in our formative years.

This is certainly the case with regard to the applications that matrix methods address

for scientists and engineers. Because linear methods are so well developed mathemat-

ically, with their wide-ranging set of tools, it is often tempting to reframe nonlinear

problems in such a way as to allow for the utilization of linear methods. In many cases,

this can be formally justified; however, one needs to be careful to do so in a manner

that is faithful to the true nature of the underlying system and the information being

sought. This theme will be revisited throughout the text as many of our applications

exhibit nonlinear behavior.

Whereas vectors and matrices arise in a wide variety of applications and settings,

the mathematics of these constructs is the same regardless of where the vectors or

matrices have their origin. We will focus in Part I on the mathematics, but with little

emphasis on formalism and proofs, and mention or illustrate many of the applications

in science and engineering. First, however, let us motivate the need for such mathemat-

ical machinery using two simple geometric scenarios. After introducing some basic

definitions and algebraic operations, we will then return in Section 1.4.1 to introduce

some additional applications of matrix problems common in science and engineering.

1.1.1 Equation of a Line

We know intuitively that the shortest distance between two points is a straight line.

Mathematically, this is reflected in the fact that there is a single unique straight line

4 Although algebra can be traced back to the ancient Babylonians and Egyptians, matrix algebra was not

formalized until the middle of the nineteenth century by Arthur Cayley.
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1.1 Introduction 7

that connects any two points. Consider the two points (x1,y1) and (x2,y2) in two

dimensions. In order to determine the line,

a0 + a1x = y,

passing through these two points, we could substitute the two points into this equation

for the line as follows:

a0 + a1x1 = y1,

a0 + a1x2 = y2.
(1.1)

Because the values of x and y are known for the two points, this is two equations

for the two unknown constants a0 and a1, and we expect a unique solution. As will

be shown in the next section, these coupled algebraic equations can conveniently be

written in vector-matrix form as
[

1 x1

1 x2

] [

a0

a1

]

=

[

y1

y2

]

.

In order to see how this corresponds to the system of equations (1.1), matrix multi-

plication will need to be defined. Working from left to right, we have a matrix that

includes the x values multiplied by a vector containing the coefficients in the equation

of the line set equal to a vector of the y values. In the present case, the matrix and

right-hand-side vector are known, and a solution is sought for the coefficients a0 and

a1 in the equation for the line. Performing the same exercise in three dimensions would

result in the need to solve three equations for three unknowns, which again could be

expressed in matrix form.

What if we have more than two points? Say that instead we have N > 2 such

points. Certainly, it would not be possible to determine a single straight line that

connects all N of the points (unless they so happen to all be collinear). Expressed

as before, we would have N equations for the two unknown coefficients; this is called

an overdetermined system as there are more equations than unknowns and no unique

solution exists. While there is not a single line that connects all of the points in this

general case, we could imagine that there is a single line that best represents the

points as illustrated in Figure 1.1. This is known as linear least-squares regression

and illustrates that there will be times when a “solution” of the system of equations

is sought even when a unique solution does not exist. Least-squares methods will be

taken up in Section 10.2 after we have covered the necessary background material.

1.1.2 Linear Transformation

As a second example, consider geometric transformations. When scientists and engi-

neers communicate their ideas, theories, and results, they must always draw attention

to their reference frame. For example, when describing the motion of a passenger

walking down the aisle of an airplane in flight, is the description from the point of

view of the passenger, the airplane, a fixed point on the Earth’s surface, the center of

the Earth, the center of the Sun, or some other point in the universe? Obviously, the
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8 Vector and Matrix Algebra

Figure 1.1 Best-fit line for N = 19 data points.

description will be quite different depending on which of these reference frames is

used. Mathematically, we formally define the reference frame and how we will locate

positions relative to it using a coordinate system or vector basis.5 This is comprised

of specifying the location of the coordinate system’s origin – the location from which

each coordinate and vector is measured – and each of the coordinate directions ema-

nating from this origin.

Of course, one may specify a problem with respect to a different coordinate system

than someone else, or different aspects of the problem may be best analyzed using

different coordinate systems. In order to communicate information between the two

coordinate systems, a transformation is necessary. For example, let us say that a point

in the two-dimensional coordinate system X is given by x1 = (2,5), and the same

point with respect to another coordinate system Y is defined by y1 = (−3,4). If this is

a linear transformation, then we must be able to multiply x1 times something, say A,

to produce y1 in the form

Ax1 = y1. (1.2)

Because both x1 and y1 involve two values, or coordinates, A is clearly not simply a

single scalar value under general circumstances. Instead, we will need to include some

combination of both coordinates to get from one coordinate system to the other. This

could involve, for example, each coordinate of y1 being some linear combination of

the two coordinates of x1, such that

5 We generally call it a coordinate system when referring to a system with one, two, or three spatial

dimensions, for which we can illustrate the coordinate system geometrically. For systems with more

than three dimensions, that is, where the dimensions do not correspond to spatial coordinates, we use the

more general vector basis, or simply basis, terminology. Consequently, a coordinate system is simply a

vector basis for a two- or three-dimensional vector space.
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1.1 Introduction 9

2a + 5b = −3,

2c + 5d = 4.
(1.3)

If we suitably define multiplication, (1.3) can be written in the compact form of (1.2)

if A is defined as

A =

[

a b

c d

]

,

which is a transformation matrix.6 It just remains to determine the constants a, b, c,

and d that comprise the transformation matrix. What we have in (1.3) is a system of

two coupled algebraic equations for these four unknown constants. Clearly, there is no

unique solution as there are many, in fact infinite, ways to transform the single point

x1 into the point y1. For example, we could simply translate the coordinate system or

rotate it clockwise or counterclockwise to transform one point to the other.

A unique transformation is obtained if we supply an additional pair of image points

in the two coordinate systems, say x2 = (−1,6) and y2 = (8, − 7). This results in the

two additional equations

−a + 6b = 8,

−c + 6d = −7,
(1.4)

which in compact form is

Ax2 = y2. (1.5)

Note that the transformation matrix is the same in (1.2) and (1.5). Equations (1.3) and

(1.4) now provide four equations for the four unknowns, and the transformation is

unique.

Is there a way to represent the system of linear algebraic equations given by (1.3)

and (1.4) in a convenient mathematical form? How do we solve such a system? Can

we be sure that this solution is unique? Can we represent linear transformations in

a general fashion for systems having any number of coordinates? These questions

are the subject of this chapter. As we will see, the points and the coordinate directions

with respect to which they are defined will be conveniently represented as vectors. The

transformation will be denoted by a matrix as will be the coefficients in the system of

linear algebraic equations to be solved for the transformation matrix. The unknowns

in the transformation matrix will be combined to form the solution vector.

Such changes of coordinate system (basis) and the transformation matrices that

accomplish them will be a consistent theme throughout the text. We will often have

occasion to transform a problem into a more desirable basis in order to facilitate

interpretation, expose features, diagnose attributes, or ease solution. We will return

6 Given their ubiquity across so many areas of mathematics, science, and engineering, one might be

surprised to learn that the term “matrix” was not coined until 1850 by James Joseph Sylvester. This is

more than a century after such classical fields as complex variables, differential calculus, and variational

calculus had their genesis.
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10 Vector and Matrix Algebra

to this important topic in Section 1.8. Along the way, we will encounter numerous

physical applications that lend themselves to similar mathematical representation as

this geometric example despite their vastly different physical interpretations. As is

so often the case in mathematics, this remarkable ability to unify many disparate

applications within the same mathematical constructs and operations is what renders

mathematics so essential to the scientist or engineer.

1.2 Definitions

Let us begin by defining vectors and matrices and several common types of matri-

ces. One can think of a matrix as the mathematical analog of a table in a text or a

spreadsheet on a computer.

Matrix: A matrix is an ordered arrangement of numbers, variables, or functions com-

prised of a rectangular grouping of elements arranged in rows and columns as follows:

A =

⎡

⎢

⎢

⎢

⎣

A11 A12 · · · A1N

A21 A22 · · · A2N

...
...

. . .
...

AM1 AM2 · · · AMN

⎤

⎥

⎥

⎥

⎦

= [Amn] .

The size of the matrix is denoted by the number of rows, M , and the number of

columns, N . We say that the matrix A is M × N , which we read as “M by N .” If

M = N , then the matrix is said to be square. Each element Amn in the matrix is

uniquely identified by two subscripts, with the first, m, being its row and the second,

n, being its column. Thus, 1 ≤ m ≤ M and 1 ≤ n ≤ N . The elements Amn may be

real or complex numbers, variables, or functions.

The main diagonal of the matrix A is given by A11,A22, . . . ,AMM or ANN ; if the

matrix is square, then AMM = ANN . Two matrices are said to be equal, that is A = B,

if their sizes are the same and Amn = Bmn for all m and n.

Vector: A (column) vector is an N × 1 matrix. For example,

u =

⎡

⎢

⎢

⎢

⎣

u1

u2

...

uN

⎤

⎥

⎥

⎥

⎦

.

The vector is said to be N -dimensional and can be considered a point in an N -

dimensional coordinate system. By common convention, matrices are denoted by bold

capital letters and vectors by bold lowercase letters.

Matrix Transpose (Adjoint): The transpose of matrix A is obtained by interchanging

its rows and columns as follows:
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AT =

⎡

⎢

⎢

⎢

⎣

A11 A21 · · · AM1

A12 A22 · · · AM2

...
...

. . .
...

A1N A2N · · · AMN

⎤

⎥

⎥

⎥

⎦

= [Anm] ,

which results in an N ×M matrix. If AT = A, then A is said to be symmetric (Anm =

Amn). Note that a matrix must be square to be symmetric. If instead the matrix is such

that A = −AT , it is called skew-symmetric. Note that for this to be true, the elements

along the main diagonal of A must all be zero.

If the elements of A are complex and A
T

= A, then A is a Hermitian matrix

(Anm = Amn), where the overbar represents the complex conjugate, and A
T

is the

conjugate transpose of A. Note that a symmetric matrix is a special case of a Hermitian

matrix.

Zero Matrix (0): Matrix of all zeros.

Identity Matrix (I): Square matrix with ones on the main diagonal and zeros every-

where else, for example,

I5 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=
[

δmn

]

,

where

δmn =

{

1, m = n

0, m �= n
.

Triangular Matrix: All elements above (left triangular) or below (right triangular)

the main diagonal are zero. For example,

L =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

A11 0 0 0 0

A21 A22 0 0 0

A31 A32 A33 0 0

A41 A42 A43 A44 0

A51 A52 A53 A54 A55

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, R =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

A11 A12 A13 A14 A15

0 A22 A23 A24 A25

0 0 A33 A34 A35

0 0 0 A44 A45

0 0 0 0 A55

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Tridiagonal Matrix: All elements are zero except along the lower (first subdiagonal),

main, and upper (first superdiagonal) diagonals as follows:

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

A11 A12 0 0 0

A21 A22 A23 0 0

0 A32 A33 A34 0

0 0 A43 A44 A45

0 0 0 A54 A55

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.
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12 Vector and Matrix Algebra

Hessenberg Matrix: All elements are zero below the lower diagonal, that is

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

A11 A12 A13 A14 A15

A21 A22 A23 A24 A25

0 A32 A33 A34 A35

0 0 A43 A44 A45

0 0 0 A54 A55

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Toeplitz Matrix: Each diagonal is a constant, such that

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

A11 A12 A13 A14 A15

A21 A11 A12 A13 A14

A31 A21 A11 A12 A13

A41 A31 A21 A11 A12

A51 A41 A31 A21 A11

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Matrix Inverse: If a square matrix A is invertible, then its inverse A−1 is such that

AA−1 = A−1A = I.

Note: If A is the 2 × 2 matrix

A =

[

A11 A12

A21 A22

]

,

then its inverse is

A−1 =
1

|A|

[

A22 −A12

−A21 A11

]

,

where the diagonal elements A11 and A22 have been exchanged, the off-diagonal

elements A12 and A21 have each switched signs, and |A| = A11A22 − A12A21 is

the determinant of A (see Section 1.4.3).

Orthogonal Matrix: An N × N square matrix A is orthogonal if

AAT = AT A = I.

It follows that

AT = A−1

for an orthogonal matrix. Such a matrix is called orthogonal because its column (and

row) vectors are mutually orthogonal (see Sections 1.2 and 2.4).

Block Matrix: A block matrix is comprised of smaller submatrices, called blocks. For

example, suppose that matrix A is a 2 × 2 block matrix comprised of four submatrices

as follows:

A =

[

A11 A12

A21 A22

]

.
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