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1 Space and Time

Orientation and Euler Angles

Kinematics deals with the geometry of motion of material bodies along time – change of

position in space and over time – without regard to the physical phenomena on which it

depends. Such description requires mathematical models for space and time (which is the

physical framework of mechanical phenomena) and mathematical models for bodies.

There is a range of models of increasing complexity for material objects: mass point

(or particle), rigid body, continuous media (including deformable bodies and fluids).

This text deals exclusively with the first two (Chapters 2 and 3), whose mathematical

complexity is much lower than that required by continuous media.

The mathematical operation time derivative, to evaluate rates of change (of position,

orientation, etc.), is a fundamental tool in mechanics. The time derivative of vectors is

more complex than that of scalars, since it has to take into account both the change of

value and of orientation. While the former is identical for all observers (or all reference

frames), the latter is not. For example, a radius marked on a rotating platform (and taken

as a vector) has the same value and orientation for observers fixed to the platform but

variable orientation for observers fixed to the ground.

Orientation is a key concept, and its mathematical description is not trivial when 3D

motion is addressed. In this text, only the Euler angles are used as they are the most

appropriate procedure for a first study. However, Appendix 1B presents a brief review

of some alternative rotation parameters due to its importance in engineering branches

such as robotics and spacecraft dynamics.

Operations on vectors can be done through their graphic representation (an arrow with

value indication1) or their components (projections on a vector basis). In mechanics, vector

bases of variable orientation relative to the reference frame (moving bases) are usual

because they facilitate the vectors’ projection and simplify the expressions of their com-

ponents and their physical interpretation. For instance, when studying the kinematics of a

vehicle, the basis with constant orientation relative to the chassis is particularly interesting.

The time derivative of vectors expressed through their components in a moving basis

leads to the concept of angular velocity of the vector basis, which describes its rate of

change of orientation relative to the reference frame. The angular velocity is a key

concept in rigid body kinematics (Chapter 3).

1 Value and module (or magnitude) of a vector are not synonyms: while the former may be positive or

negative, the latter is strictly positive.
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1.1 The Absolute Time of Newtonian Mechanics

In mechanics, the concept of time is linked to that of ordered succession of instants. An

instant t is what two simultaneous events have in common. Let us suppose that an

observer detects two events (for example, the collision of particles P1 and P2 – event A –

and the collision of particles P3 and P4 – event B). The observer can establish the

following without ambiguity:

� If they are simultaneous, tA ¼ tB

� If A precedes B, tA < tB

� If B precedes A, tA > tB

From the ordering of events, we can establish an ordered sequence of instants that we

call time.

The principle of absolute simultaneity states that this sequence is the same for all

observers whose relative speed is much lower than that of light (which is the case

considered in Newtonian mechanics): Newtonian time is an absolute time. A same

clock ticks the time instants for all observers – for example, by showing the succession

of coincidences of a needle with marks on a dial. Since it is an ordered and dense

succession of points (between two instants it is always possible to insert another), the

mathematical model for time is the one-dimensional space of real numbers R1.

The definition of time must be completed with its measurement (that is, the assess-

ment of the time interval between two instants). This is not just a kinematic issue but a

dynamic one (principle of inertia, in section 1.3, chapter 1 of Rigid Body Dynamics

[Cambridge University Press, forthcoming]).

In relativistic mechanics, which holds when the relative speed between observers is

close to that of light, the principle of absolute simultaneity is no longer valid: two events

A and B can be simultaneous for an observer but be “A before B” for a second observer

and “B before A” for a third observer. For this reason, each observer needs its own clock.

1.2 Space and Reference Frame

In Newtonian mechanics, the physical space is modeled as an affine Euclidean three-

dimensional point space E3. To define the location of points of E3, we need to choose a

point O (called origin) and three noncoplanar axes (Fig. 1.1). Vectors OP (where P is

any point in E3) are position vectors, and they belong to the vector space associated with

the affine point space.

An origin O and a set of three noncoplanar axes define a mathematical frame of

reference in E3. A different origin or a different set of axes yields a different description

of those position vectors and hence defines a different frame of reference from the

mathematical point of view.2

2 The mathematical concept of reference frame (MRF) and that of coordinate system are not equivalent: for

the same MRF, different coordinate systems (Cartesian, polar, cylindrical, etc.) can be used.
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In mechanics, the definition of frame of reference is different: it is a set of “rest

points” (points whose mutual distances do not change – they are mutually fixed) in E3.

Note that this definition contains implicitly the idea of state of motion and thus the

concept of time (not taken into account in the mathematical reference frame). The

constitutive elements of physical reference frames are space and time.

This physical notion is intrinsically linked to that of the observer. The observer

(which is not a point) may be located anywhere, and what he/she measures is the

movement of points relative to the reference frame.

Movement is always associated with a reference frame: movements are relative to

reference frames. If a point P passes through different points of a reference frame R, it

is a moving point relative to R. The set of those points constitutes the trajectory of

P in R. In principle, a same point describes different trajectories in different reference

frames.

A reference frame R can be graphically represented either through a set of points

mutually fixed or through a trihedral (single rest point O in R and three noncoplanar

axes, Fig. 1.2). Sometimes, the observer is added to the representation of the reference

frame (Fig. 1.3). Note that no clock is included in those compact representations. This is

so because we will be dealing with Newtonian mechanics, and in that context the

principle of absolute simultaneity holds. In other words, a same clock is shared by all

observers, and so it can be suppressed from the representation without generating any

confusion.

Reference frame (R) and rigid body are close concepts: both are sets of mutually

fixed points, though those in the rigid body are just a subset in E3, and they are particles

(or mass points) (Fig. 1.4). This is why we usually describe reference frames through

rigid body names: rotating platform frame, chassis frame, etc.

A consequence of that equivalence is that the concept of orientation (and that of

angular velocity) applies both to reference frames and rigid bodies.

origin O

P

FRAME OF REFERENCE  origin + 3 noncoplanar axes

trihedral

1

2

3

usually:

·  orthogonal

·  right-handed

Fig. 1.1

31.2 Space and Reference Frame
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FRAMES OF REFERENCE: usual representations

R1

R2

R1

R2

R1

R2

Fig. 1.3

Frame of
reference

point space 
fixed to the rigid body

rigid body:
set of points

mutually fixed

closeness between the concepts:

“frame of reference“ and “rigid body“

Rigid body

frame of

reference

Fig. 1.4

R1

R2

FRAME OF REFERENCE as a space of

points  mutually fixed 

the concept of time is involved

Fig. 1.2
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1.3 Representation of Vectors and Operations Involving a Single Time Instant

In a vector space of three dimensions (as E3), vectors can be represented in a simple and

intuitive graphical way as an arrow (which defines a positive generic direction) and a

value (defined by a real number). When the value is positive, the vector direction

corresponds to that of the arrow; when it is negative, it is the opposite.

The description (arrow, value) is more efficient than that of (orientation, sense,

magnitude): as the value incorporates magnitude and sense, there is no need of two

analytical formulations (one for positive sense and another one for negative).

Graphic representations played an important role before the advent of computers:

graphic statics and graphic kinematics constituted two important branches of mech-

anics applied to engineering. Easy access to computational power has led to a partial

disregard of graphic techniques in favor of numerical treatments.

The graphic representation is widely used in this book as an auxiliary element. In

very simple cases, it allows operations (sum, vector product, derivation, etc.) without

resorting to analytical treatments based on the representation of the vector through its

components in a vector basis.

Vector operations carried out in the same time instant – algebraic operations such as

addition, scalar product, and vector product – have a simple geometric description and

can be performed from their graphical representation (Fig. 1.5).

The time derivative of a vector, which is an operation over time – it involves the

vector in two time instants separated by a time interval that tends to zero – can also be

treated directly through its graphic representation (Section 1.4).

All previous operations can be performed through the description of the vectors

by their components in a vector basis. The basis orientation can be either constant

(fixed basis) or variable in the reference frame (moving basis). Whether a basis

is fixed or moving is irrelevant in operations that involve vectors at a same

time instant.

u · v = uv cos  =
 = u· projection v ]u

v

u

u

v
u + v

SCALAR PRODUCT

VECTOR PRODUCTADDITION

+
_

v

u

u  v

perpendicular to u and v
with the sense of advance
of a right-threaded screw 
rotated from u to v 
through the smallest angle

module: uv sin  = area

Fig. 1.5
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In a vector basis B with versors �e1,�e2,�e3ð Þ, a vector �u is represented by the column

vector of its components u1, u2, u3ð Þ:

�u ¼
X

3

i¼1

ui�ei ! �uf gB ¼
u1
u2
u2

8

<

:

9

=

;

: (1.1)

In this text, all the bases are:

� Orthonormal: �ei��ej ¼
1, i ¼ j

0, i 6¼ j

�

� Right-handed: �e3 ¼ �e1 � �e2 (Fig. 1.6a); if �e3 had the opposite direction, it would

be an inverse (or left-handed) basis (Fig. 1.6b)

From that analytical representation, the addition and product operations are solved

simply as:

�uþ�vf gB¼
u1
u2
u3

8

<

:

9

=

;

þ
v1
v2
v3

8

<

:

9

=

;

¼
u1þv1
u2þv2
u3þv3

8

<

:

9

=

;

, �u��vf gB¼
u1
u2
u3

8

<

:

9

=

;

�
v1
v2
v3

8

<

:

9

=

;

¼u1v1þu2v2þu3v3:

(1.2)

The cross product can be calculated from a determinant:

�u� �v ¼ DET

�e1 �e2 �e3
u1 u2 u3
v1 v2 v3

�

�

�

�

�

�

�

�

�

�

�

�

) �u� �vf gB ¼
u1
u2
u3

8

<

:

9

=

;

�
v1
v2
v3

8

<

:

9

=

;

¼
u2v3 � u3v2
u3v1 � u1v3
u1v2 � u2v1

8

<

:

9

=

;

:

(1.3)

The �u� �v product can be understood as a linear application �u�ð Þ transforming vector �v

into vector �u� �v. Therefore, it can be represented by a matrix (in this case, antisymmetric):3

e3 = e1  e2

e1 e2

right-handed
basis

e1
e2

e3 = – e1  e2

(a)

left-handed
basis

(b)

Fig. 1.6

3 This matrix representation has a practical interest in certain analytical processes (Section 1.5).
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�u� �vf gB ¼ �u�½ �B �vf gB ¼
0 �u3 u2
u3 0 u1
�u2 u1 0

2

4

3

5

v1
v2
v3

8

<

:

9

=

;

: (1.4)

The expressions in Eqs. (1.2, 1.3) are valid for any basis B (fixed or moving). This is

not the case in operations involving vectors at different time instants (such as time

derivatives and integrations). As will be seen in Section 1.6, the analytical time

derivative (from the vectors’ projection on moving bases) introduces a term that

depends on the rate of change of orientation of the basis in the reference frame. Time

integration through moving bases is presented in Appendix 1C.

The criterion for choosing a vector basis is of a practical nature: it is convenient that

the obtaining of the vectors components is simple, and that the result is simple enough

(if possible) to facilitate its physical interpretation.

1.4 Geometric Time Derivative of Vectors

The time derivative of a variable (•) evaluates its change per time unit:

d •ð Þ

dt
¼ lim Δt!0

Δ •ð Þ

Δt
: (1.5)

If the variable is a scalar function ρ (for instance, the distance ρ between two points),

the result is identical in all reference frames, as all observers detect the same Δρ for a

same Δt (because of the principle of absolute simultaneity):

dρ

dt
¼ lim Δt!0

Δρ

Δt
, same unique value for all observers: (1.6)

However, the change of a vector Δ�u is not the same for all observers in principle. The

change of its value is indeed the same for everyone (since it is a scalar), but there may be

discrepancies when it comes to evaluating the change of its orientation. For example, if

we consider the earth frame RA and the platform frame RB (rotating about an axis fixed

in RA, Fig. 1.7), a vector �u constant for observer B (with zero time derivative for

observer B) is a rotary vector for observer A as the �u orientation is not constant. The

origin of this discrepancy is the relative rotation between the two reference frames.

RA

A

B

RB

u

u = 0

u = 0

u(t) u(t+ t)

fixed in the
platform

Fig. 1.7

71.4 Geometric Time Derivative of Vectors
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The time derivative of a vector, then, is reference-dependent. It is advisable to

explicitly include this dependency in the notation:

d�u

dt

�

R

¼ lim Δt!0

Δ�u�R
Δt

¼ lim Δt!0

Δ�u

Δt

�

R

, (1.7)

where subscript R is the reference frame where it is calculated. A frequent notation for

the time derivative is a simple dot on the variable:

_ρ �
dρ

dt
; _�u

�

R
�

d�u

dt

�

R

: (1.8)

When there is no doubt about the reference frame where the time derivative is being

calculated, the subscript R will be disregarded, and we will just write _�u to simplify the

notation.

The time derivative of a vector in a given reference frame R is nonzero when there is

a change in value (equal in all R) or a change in orientation (which is R-dependent in

principle, Fig. 1.8). When Δt ! 0, those changes can be associated with two different

vectors (whose addition yields the total time derivative):

� The vector associated with the change in value: it is parallel to �u and with the

same positive generic sense; its value is _u ¼ du=dt

� The vector associated with the change of orientation: it is perpendicular to �u, with

direction associated with the change of orientation; its value can often be expressed

as a product of value u (or of some projection of �u) and an angular velocity ω

R

u(t)
u R

value u

value  u

associated with
the change

of value

associated with
the change of

orientation in R

lim
t 0

u R

t
=

du

Rdt

u(t+ t)

u(t)

du
 dt

uvalue 

value that can often be
expressed as proportional to u, 
where  is an angular velocity

same orientation and
generic positive sense

as u

du

Rdt

associated with
the change of

orientation in R

associated with
the change of value

direction associated
with the change

of orientation

·

time derivativevector change in R

Fig. 1.8
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This procedure will be called geometric time derivative (to distinguish it from the

analytic time derivative, based on the components of the vector in a vector basis). It is

highly recommended in simple cases not just because it is straightforward but because it

is a description close to the physical meaning of the time derivative, so it may help to

avoid mistakes that slip easily in the analytical derivative. Chapter 2 presents some

examples of this procedure.

1.5 Analytical Time Derivative of Vectors: Angular Velocity Vector

The geometric time derivative described in the previous section is a powerful tool, but it

may be difficult to use when vectors evolve in a 3D space. In those cases, it is advisable

to shift to an analytical calculation (through a vector basis). However, this can be tricky,

mainly for two reasons:

� The time derivative calls for the information of the vector in two different time

instants (whose separation tends to zero); in the analytical calculation, this may

go unnoticed (while it never does in the geometric one)

� If the vector is projected in a moving basis MB (relative to a reference frame R),

the change of the value of its components does not describe the change of the

vector in R as the latter may also be influenced by the change of orientation of

MB relative to R

In a vector basis FB with constant orientation (fixed basis) in R, the components of

vector _�u
�

R
are just the time derivative of the components of �u:

�uf gFB ¼
u1
u2
u3

8

<

:

9

=

;

! _�u
�

R

� �

FB
¼

_u1
_u2
_u3

8

<

:

9

=

;

�
d

dt
�uf gFB: (1.9)

♣ Proof

In a fixed basis with versors �e1,�e2,�e3ð Þ, vector �u is:

�u ¼
X

3

i¼1

ui�ei: (1.10)

Its time derivative in a reference frame R is:

_�u
�

R
¼

X

3

i¼1

_ui�ei þ
X

3

i¼1

ui _�ei
�

R
: (1.11)

As the components ui are scalar functions, there is no need of explicit indication of the

reference frame when calculating _ui. This explicit indication is mandatory when

performing the time derivative of versors �ei. However, as FB is a fixed basis, the time

derivative of �ei is zero, so:

91.5 Analytical Time Derivative of Vectors: Angular Velocity Vector
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_�u
�

R
¼

X

3

i¼1

_ui�ei: (1.12)

Note that this calculation requires the knowledge of the components along time ui tð Þð Þ,

or, equivalently, their expression has to be completely general (that is, valid for any time

instant). ♣

Let’s consider now the time derivative in R of a vector �u projected in a moving basis

MB. In that case, a nonzero value of _ui does not imply that _�u
�

R
is nonzero. In general,

that time derivative contains two terms:

_�u
�

R
¼

X

3

i¼1

_ui�ei þ
X

3

i¼1

ui _�ei
�

R
, _�ei

�

R
6¼ 0: (1.13)

Equation (1.13) proves that a vector with constant ui _ui ¼ 0ð Þ is not necessarily a vector

constant in R:

_ui ¼ 0 ) _�u
�

R
¼

X

3

i¼1

ui _�ei
�

R
6¼ 0: (1.14)

If the vector is constant in R:

_�u
�

R
¼ 0 )

X

3

i¼1

_ui�ei ¼ �
X

3

i¼1

ui _�ei
�

R
: (1.15)

Equation (1.15) shows that now the only cause of variation of the vector components

_uið Þ is the change of orientation of the MB relative to R _�ei
�

R

� 	

.

When using moving bases, the time derivatives of the components are only a

part of the vector time derivative.

The components of _�u
�

R
are obtained by adding the column vector of the time

derivatives of the vector components and the vector product �Ω
MB
R � �u, where �Ω

MB
R is

the angular velocity of MB relative to R:

_�u
�

R

� �

MB
¼

d

dt
�uf gMB þ �Ω

MB

R � �u
n o

MB
: (1.16)

♣ Proof

The vector components of vector �u in a fixed basis FB and in a moving basis MB are

related through the transformation matrix S½ �:

�uf gFB ¼ S½ � �uf gMB: (1.17)

The columns in S½ � are the components of the MB basis projected in the FB basis.

This matrix is variable in time. As the bases are orthonormal, it follows that:

S½ ��1 ¼ S½ �T: (1.18)
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