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Preface

The study of numerical range starts with the discovery by Toeplitz and Hausdorff
100 years ago (in 1918 and 1919) of the convexity of the numerical ranges (called
fields of values in the early years) of finite matrices. Progressing at a slow pace in
the beginning, the theory picks up steam gradually over the subsequent years and
has now established itself as a full-fledged subfield of operator theory. It provides a
powerful tool in studying properties of the operators on a Hilbert space. The converse
line of research on the shape of the numerical ranges of operators in various special
classes is also very fruitful. Useful references in the past, from which we ourselves
learned the theory over the years, are [290, Chapter 22] by Halmos, [314, Chapter 1]
by Horn and Johnson, the two monographs [66, 67] by Bonsall and Duncan, and the
book [281] by Gustafson and Rao.

The present book is intended to be a comprehensive one covering different aspects
of the theoretical developments of the numerical range theory. It originates from a
draft prepared by the first author more than two decades ago. Lying idly for all these
years, it was resurrected only in the past two years with the joining of the second
author. It goes without saying that a great amount of updating, rewriting, plus the
adding of Chapters 7 and 8 was needed to incorporate the many newly discovered
results of this area into the final edition. At the research level, the book serves as a
reference source for various topics in the study of numerical range. Selected parts of
the contents are also suitable for a one- or two-term graduate course or a graduate
seminar after one on functional analysis or operator theory.

The prerequisite for this book is some basic understanding of the elementary
functional analysis or operator theory. A brief summary of the needed results together
with the commonly used notations and terms has been given in the Introduction.

The main text starts with Chapter 1 on the basic properties of the numerical range.
These include its relations to the spectrum of the concerned operator, the topological
properties of its boundary and interior, how it changes under various transforms of
the operator, and the different parameters such as the numerical radius, Crawford
numbers, and others which measure its size in metric terms.

We then turn our attention, in Chapter 2, to the numerical ranges of certain special
class operators such as the quadratic operators, normal operators, hyponormal and
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x Preface

Toeplitz operators, (unilateral or bilateral) weighted shifts, and composition operators
on H 2. The chapter ends with the attainment problem, namely, the problem of
determining which nonempty bounded convex subset of the plane is the numerical
range of some operator on a (separable) Hilbert space. One major result in this respect
is the one proved by Agler that numerical ranges must be Borel sets.

Chapter 3 starts with a more detailed study of the numerical radius. The numerical
contractions (operators with numerical radii at most one) are then taken up in
subsequent sections. The most interesting property in this part is the power inequality
that powers of numerical contractions are themselves numerical contractions. The
important theorem of Ando’s gives a structural factorization of numerical contrac-
tions, which enables us to generalize the power inequality from powers to analytic
functions of numerical contractions and to improve over Crabb’s results concerning
the asymptotic behavior of the norms of the powers of a numerical contraction acting
on a unit vector. The chapter ends with a discussion on the numerical radius of the
product of two commuting operators. The concerned problem aroused much interest
in the 1970s and 1980s until the proposed conjecture was refuted by Müller and by
Davidson and Holbrook right after.

Two of the generalized numerical ranges of the classical one, namely, the algebraic
and essential numerical ranges, are the subjects of Chapter 4. The former can be
defined generally for elements of a Banach algebra while the latter, as the special
case for the Calkin algebra, is inherently connected with the compact operators. Two
related classes of special operators, the commutator and zero-diagonal operators, and
also the notion of total dilation are considered before a detailed study of the numerical
ranges of compact operators is carried out.

A deep exploration of the relationships between the numerical range and the
operator dilation is presented in Chapter 5. These include the classical unitary
dilations of contractions, notable among which is the Choi–Li solution of a 35-year-
old problem of Halmos concerning the numerical ranges of a contraction and its
unitary dilations, the Berger power dilation for numerical contractions, and the power
dilation of nilpotent contractions with excursions to the powerful Arveson extension
theorem and Stinespring dilation theorem. The chapter concludes with spectral sets
for operators, a notion originating from the von Neumann inequality for contractions.
In recent years, the more general k-spectrality and complete k-spectrality attracted
much attention due to a conjecture made by Crouzeix in 2004.

The next two chapters, Chapters 6 and 7, deal with numerical ranges of finite
matrices. Here the extra tool of Kippenhahn polynomial comes in handy, which,
among other things, is used to classify the numerical ranges of 3-by-3 matrices. Other
effective devices are Bézout’s theorem from algebraic geometry and the classical
Riesz–Fejér theorem for trigonometric polynomials. These can be used to prove
Anderson’s theorem on circular numerical ranges of finite matrices and to estimate
the number of line segments on the boundary of the numerical range. Nonnegative
matrices, the ones with nonnegative entries, are the last topic considered in Chapter 6.
Here Issos’s result serves as the numerical range analogue of the Perron–Frobenius
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Preface xi

theorem for spectral properties of such matrices. It ends with discussions on the
numerical ranges of doubly stochastic and row stochastic matrices.

Chapter 7 is on the numerical ranges of Sn-matrices. As the n-dimensional version
of the more general compression of the shift, such matrices have numerical ranges
enjoying many classical geometric properties such as the Poncelet porism and the
generalized Brianchon–Ceva and Lucas–Siebeck theorems. An extension result of
certain contractions to the direct sum of such operators via the Sz.-Nagy–Foiaş
contraction theory provides more information on nilpotent operators in general and
Sn-matrices in particular. The chapter ends with a result on the Gau–Wu numbers of
Sn-matrices.

In the concluding Chapter 8, we consider various types of generalized numerical
ranges other than those two discussed in Chapter 4. These include the joint numerical
range, C-numerical range, q-numerical range, Davis–Wielandt shell, algebraic and
spatial matricial ranges, and the higher-rank numerical range. Though some of
them are not always convex, they all reveal rich theories in connection with the
operators involved. The higher-rank numerical range developed in the past one and
half decades is particularly interesting in this regard. The notion is motivated by
the investigations in the quantum computing and quantum information theory, which
are not covered in the present book. One pointer of its achievements is the Li–Sze
characterization in 2008, which yields its convexity in a very natural way. The chapter
ends in a discussion of the related notion of zero-dilation index of matrices.

At the end of each chapter, there is a collection of problems, numbered from the
40s to 70s. They are at diverse degrees of difficulty, all aiming at reinforcing in
the reader’s mind the ideas developed in the text. Some problems are just routine
exercises filling up the missing links in the arguments for the proofs. Some give
more details of special cases of the known results. Still others refer to results in the
literature extending the relevant theory.

The Appendix after the main text collects some basic facts of convex sets in the real
Euclidean space Rn and particularly in the plane R2 for the convenience of occasional
references from the text.

Throughout the text, relevant comments and specific references have been given to
each major (or minor) result following the flow of the narratives. This is against the
usual practice in most books of collecting them at the end of each section or chapter.
We believe that the present arrangement is more convenient for the reader to check
the developments of each specific result without going back and forth.

A few words on our reference system. We refer to a theorem, proposition, lemma,
corollary, or even a figure within each chapter by a two-number designation and
from other chapters in three numbers. Thus, for example, Theorem 1.5 in Chapter 1
is referred to as Theorem 1.5 within Chapter 1 and as Theorem 1.1.5 from other
chapters. In the same vein, Theorem I.1.1 and Theorem A.1.1 refer to Theorem 1.1
of the Introduction and of Appendix, respectively. In a multiple reference, we arrange
the items contained therein in the chronological order. This is for the convenience of
the reader as he or she goes through the literature. For example, in [164, 8], the
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reference [164] appeared years before [8] so that the results in [8] may depend on the
ones in [164].

Throughout the years, the research interests of numerical ranges have been
sustained mostly by the biennial “Workshop on Numerical Ranges and Numerical
Radii” (WONRA). We have Chi-Kwong Li to thank for his tireless organization
not only of this workshop but also many other yearly meetings and conferences in
linear algebra. As one of the leaders of the Hong Kong school, he has made many
fundamental contributions to the theory as were previously mentioned. We are very
grateful to him and to the numerical range community in general, whose support
through the years has given us the impetus to move forward. Thanks are also due to
D. Farenick, whose incisive comments after a talk given by the first author in 1994
aroused the latter’s initial interest in numerical ranges. Finally, the yearly grants from
the Ministry of Science and Technology (formerly the National Science Council) of
the Republic of China are gratefully acknowledged. The first author also thanks the
Applied Math Department of National Chiao Tung University for its support over the
past 45 years (even after his retirement).
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�k(A) set

⋂
0≤θ<2π

{
λ ∈ C : Re (e−iθλ) ≤ λk

(
Re (e−iθA)

)}
, 407

x vector of complex conjugates of components of x, 273
∂△ boundary of △, 3
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n, 273
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c(A) center of A, 37
C∗(A) unital C∗-algebra generated by A, 397
CR(A) Kippenhahn curve of A, 244
Cφ composition operator, 74
CP n(A) class of unital completely positive maps from C∗(A) to Mn(C),

397
d(θ) support function, 450
D(A) set {z ∈ C : A − zI is zero-diagonal}, 169
d(A) zero-dilation index of A, 423
DA defect operator of A, 196
dA defect index of A, 196
dA(θ) support function of W(A), 182
DW(A) Davis–Wielandt shell of A, 386
EA spectral measure of A, 57
fa(z) Blaschke factor, 115
Fσ union of countably many closed sets, 83
GA associated undirected graph of A, 133
Gδ intersection of countably many open sets, 82
Gδσ union of countably many Gδ’s, 82
H(φ) space H 2 ⊖ φH 2, 305
H ⊗ K tensor product of H and K , 131
H 2 Hardy space, 2
H∞ Hardy space of bounded analytic functions on D, 10
Hn space of n-by-n Hermitian matrices, 360
I identity operator, 2
i(△) inradius of △, 36
i+(A) number of positive eigenvalues of Hermitian matrix A, 423
i−(A) number of negative eigenvalues of Hermitian matrix A, 423
i0(A) number of zero eigenvalues of Hermitian matrix A, 423
IH identity operator on H , 2
In n-by-n identity matrix, 6
i≥0(A) number of nonnegative eigenvalues of Hermitian matrix A, 423
i≤0(A) number of nonpositive eigenvalues of Hermitian matrix A, 423
jA norm-one index of A, 339
Jn n-by-n Jordan block, 6
Jn(μ) n-by-n Jordan block with eigenvalue μ, 411
k(A) Gau–Wu number of A, 345
K⊥ orthogonal complement of K , 2
K1 ⊖ K2 orthogonal difference of K1 and K2, 2
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List of Symbols xvii

Kn n-by-n weighted shift matrix with weights
√

2,1, . . . ,1,
√

2,0,
124

l(A) number of line segments on ∂W(A), 262
L2(μ) space of μ-square-integrable functions on X, 2
L2(∂D) space of Lebesgue square-integrable functions on ∂D, 2
L2[0,1] space of Lebesgue square-integrable functions on [0,1], 2
L∞(μ) space of μ-essentially bounded functions on X, 58
L∞(∂D) space of Lebesgue essentially bounded functions on ∂D, 65
M(△) maximal width of △, 39
m(△) minimal width of △, 39
m(A) minimum modulus of A, 36
mA(z) minimal polynomial of A, 6
Mn or Mn(C) space of n-by-n complex matrices, 6
Mφ multiplication operator, 5
n(A) numerical index of A, 152
nc(A) numerical center of A, 36
pA(x,y,z) Kippenhahn polynomial of A, 243
pA(z) characteristic polynomial of A, 6
PK (orthogonal) projection from H onto K , 4
R(△) outer radius of △, 36
r(△) radius of △, 453
Rφ essential range of φ, 66
S(φ) compression of the shift on H(φ), 305
Sn class of Sn-matrices, 10
S−1

n class of S−1
n -matrices, 351

t (A) transcendental radius of A, 37
Tφ Toeplitz operator, 10
W(A) numerical range of m-tuple A = (A1, . . . ,Am), 359
W(A) numerical range of A, 11
w(A) numerical radius of A, 32
W(A1, . . . ,Am) joint numerical range of A1, . . . ,Am, 359
W n(A) algebraic matricial range of A, 397
W0(A) maximal numerical range of A, 37
WC(A) C-numerical range of A, 371
Wc(A) c-numerical range of A, 371
wC(A) C-numerical radius of A, 439
We(A) joint essential numerical range of A = (A1, . . . ,Am), 364
We(A) essential numerical range of A, 155
we(A) essential numerical radius of A, 161
We(A1, . . . ,Am) joint essential numerical range of A1, . . . ,Am, 364
Wg(A) generalized numerical range of A, 45
Wk(A) k-numerical range of A, 371
Wq(A) q-numerical range of A, 380
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xviii List of Symbols

W n
s (A) spatial matricial range of A, 390

Wδ(A) δ-numerical range of A, 45
WA(x) algebraic numerical range of x in A, 146
wA(x) algebraic numerical radius of x in A, 150
x ⊗ y rank-one operator, 56
x ⊗ y tensor product of x and y, 131
Z(A) core of A, 114
Z+(A) upper bound of Z(A), 142
Z−(A) lower bound of Z(A), 142
SOT strong operator topology, 2
WOT weak operator topology, 2
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