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Introduction

Preliminaries in Operator Theory

In this chapter, we give a summary of the ingredients from operator theory which

will be needed in discussions in subsequent chapters of this book. This is only a

brief overview of the relevant definitions, basic properties, and main results. Some of

them are needed only in certain specific chapters and sections, where more detailed

information, when needed, will be provided in the main text or verified by the reader

in the “Problems” section after each chapter. We will also fix the notations and the

terminology used throughout the book. The general references are the two books

[290] and [130] by Halmos and Conway, respectively.

Let N = {1,2, . . .} and Z = {. . . , − 2, − 1,0,1,2, . . .} consist of positive integers

and all integers, respectively. We use R and C to denote the fields of real and complex

numbers, respectively, and D the open unit disc {z ∈ C : |z| < 1} of C. For a nonzero

z in C, its principal argument, denoted by Arg z, is the unique θ in [0,2π) such

that z = |z|eiθ , and its argument arg z assumes the multiple values Arg z + 2nπ ,

n = 0, ± 1, ± 2, . . . . For a nonempty subset △ of R, we use inf△ (resp., sup△) to

denote the infimum (resp., supremum) of elements of △. If the extremum is attained

at some point of △, then we use min△ (resp., max△) instead of inf△ (resp., sup△).

For a point λ and a set △ in the plane, we use dist (λ,△) to denote the distance

inf{|λ − z| : z ∈ △} from λ to △. For any real t , ⌊t⌋ (resp., ⌈t⌉) denotes the floor

(resp., ceiling) of t , that is, the largest (resp., smallest) integer which is less (resp.,

greater) than or equal to t . For any set △, let #△ denote its cardinal number or

cardinality. The cardinalities #N = #Z and #R = #C are ℵ0 and ℵ1, respectively. If

△1 and △2 are nonempty subsets of a vector space X, we use △1 +△2 to denote the

set {x + y : x ∈ △1,y ∈ △2}. When △1 is a singleton {x}, △1 +△2 is abbreviated to

x +△2.

I.1 Basic Properties

In the discussions throughout, we consider only Hilbert spaces H over C with inner

product 〈·,·〉 and its associated norm ‖ · ‖. The dimension of H , denoted by dim H , is

the cardinal number of any maximal orthonormal subset of vectors in H . If dim H =

n < ∞, then H can be identified with C
n and H is separable if and only if dim H
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2 Introduction

is at most countable. A net of vectors {xα} in H is said to converge weakly to x if

〈xα,y〉 → 〈x,y〉 for any vector y in H .

A bounded linear operator A on H is a linear transformation on H for which the

operator norm defined by ‖A‖ = sup{‖Ax‖/‖x‖ : x ∈ H,x �= 0} is finite. The

collection of all operators on H is denoted by B(H). It is a complete metric space

under the metric induced by the operator norm. Other commonly used topologies

in B(H) are the strong operator topology (SOT) and the weak operator topology

(WOT). A net of operators {Aα} converging to A under SOT (resp., WOT) means

that ‖(Aα − A)x‖ → 0 (resp., 〈(Aα − A)x,y〉 → 0) for any vector x (resp., vectors

x and y). It is known that the WOT is properly weaker than SOT and SOT properly

weaker than the norm topology.

A prominent property of WOT convergence is the following version of Alaoglu’s

theorem [130, Proposition IX.5.5].

Theorem 1.1 Any net of operators in a bounded subset of B(H) has a WOT-

convergent subnet.

For 1 ≤ n ≤ ∞, let Hj , 1 ≤ j ≤ n, be a sequence of Hilbert spaces. Their

direct sum
∑n

j=1 ⊕Hj is the space {
∑

j ⊕xj : xj ∈ Hj for all j,
∑

j ‖xj‖
2 < ∞}

equipped with the inner product 〈
∑

j ⊕xj,
∑

j ⊕yj 〉 =
∑

j 〈xj,yj 〉. If Aj , 1≤ j ≤ n,

is an operator on Hj , then
∑n

j=1 ⊕Aj is the operator (
∑

j ⊕Aj )(
∑

j ⊕xj ) =∑
j ⊕(Ajxj ). An operator of the form

∑n
j=1 ⊕A on

∑n
j=1 ⊕H , 1 ≤ n ≤ ∞, is

call an inflation of A and will be denoted by A(n) on H (n).

Some concrete Hilbert spaces encountered in the book are ℓ2 = {(x0,x1,x2, . . .) :∑∞
n=0 |xn|

2 < ∞}, ℓ2(Z) = {(. . . ,x−1,x0,x1, . . .) :
∑∞

n=−∞ |xn|
2 < ∞}, L2(μ) =

{f : X → C : f measurable,
∫
X
|f |2dμ < ∞}, where μ is a positive measure on a

σ -algebra of subsets of set X, L2[0,1] (resp., L2(∂D)) when the preceding μ is the

Lebesgue measure m on [0,1] (resp., ∂D), and the Hardy space H 2 ={f :D→ C : f

analytic on D, sup0<r<1

∫ 2π

0 |f (reiθ )|2dθ < ∞} or {f ∈ L2(∂D) : f has Fourier

expansion f (eiθ ) =
∑∞

n=0 ane
inθ a.e. [m]} with the obvious inner products.

If dim H = n < ∞, then an operator A on H can be identified with an n-by-n

matrix [aij ]ni,j=1. Similarly, if dim H is countably infinite, then H can be identified

with ℓ2 or ℓ2(Z) and A on H with [aij ]∞i,j=1 or [aij ]∞i,j=−∞.

Associated with any operator A on H is its adjoint A∗ defined by 〈A∗x,y〉 =

〈x,Ay〉 for all x and y in H . It is known, among other things, that ‖A∗‖ = ‖A‖,

A∗∗ = A and (AB)∗ = B∗A∗ for operators A and B.

A subspace of a Hilbert space H is always assumed to be closed. If it is not, we

refer to it as a linear submanifold of H . For any nonempty subset M of H ,
∨

M

denotes the subspace spanned by M . If K is a subspace of H , we use K⊥ to denote

its orthogonal complement {x ∈ H : 〈x,y〉 = 0 for all y in K} in H . For two

subspaces K1 and K2 of H , K1 ⊖ K2 denotes the orthogonal difference K1 ∩ K⊥
2

of K1 and K2. The kernel and range of an operator A will be denoted by ker A and

ran A, respectively. The identity operator on H is denoted by IH or, simply, I .
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I.3 Special Types of Operators 3

I.2 Spectral Theory

The spectrum σ(A) of an operator A on H is the set {λ ∈ C : A− λI not invertible}.

It is a nonempty compact subset of the complex plane. In particular, A is invertible

if and only if 0 is not in σ(A). The resolvent of A is the analytic function fA(z) =

(zI − A)−1 from C \ σ(A) to B(H).

The spectral radius ρ(A) of A is max{|λ| : λ ∈ σ(A)}. It is always less than

or equal to ‖A‖ and can be recaptured from the norms of powers of A: ρ(A) =

limn ‖A
n‖1/n = supn ‖A

n‖1/n (Gelfand’s formula).

The points in σ(A) can be classified more finely. The point spectrum σp(A) of

A consists of the eigenvalues of A, namely, the points λ for which Ax = λx for

some nonzero vector x. If Ax = λx and A∗x = λx for a nonzero x, then λ is

a reducing eigenvalue of A, in which case A can be expressed as the direct sum

[λ] ⊕ B for some operator B. The approximate point spectrum σap(A) of A is the

set {λ ∈ C : ‖(A − λI)xn‖ → 0 for some unit vectors xn in H }. It is equal to the

left spectrum σl(A) of A, defined by {λ ∈ C : A − λI not left invertible}. The right

spectrum σr(A) of A can similarly be defined, which equals σap(A∗)∗ of A∗, where,

for any subset △ of C, △∗ denotes its conjugate {λ : λ ∈ △}. The three spectra are

related by ∂σ(A) ⊆ σl(A) ∩ σr(A).

One useful result relating the spectrum of a function of an operator f (A) to that of

A is the following spectral mapping theorem.

Theorem 2.1 If A is an operator on H and f is a function analytic on a

neighborhood of σ(A), then σ
(
f (A)

)
= f

(
σ(A)

)
, where f (A) is defined following

the Riesz functional calculus.

This can be found in [130, Chapter VII, Section 4].

I.3 Special Types of Operators

A quadratic operator A is one which satisfies p(A) = 0 for some quadratic

polynomial p. If p(z) = (z − a)(z − b), then σ(A) consists of the two eigenvalues

a and b of A. More generally, if p is allowed to be any polynomial, then A is an

algebraic operator. Special cases of quadratic operators are square-zero operators

(A2 = 0) and idempotent operators (A2 = A). A canonical form for quadratic

operators is given in [555, Theorem 1.1].

A natural generalization of square-zero operators is the nilpotent ones. An operator

A is nilpotent if An = 0 for some n ≥ 1. The smallest integer n for which An = 0

is called the nilpotency of A. Nilpotent operators are always quasinilpotent, which

means that its spectrum consists of 0 only.

A Hermitian operator A is one with A = A∗. In this case, its spectrum is always

contained in the real line R. Every general operator A can be written as Re A +

iIm A, called the Cartesian decomposition of A, where Re A = (A + A∗)/2 and
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4 Introduction

Im A = (A − A∗)/(2i) are the real and imaginary parts of A, respectively. Two

notable subclasses of Hermitian operators are the positive semidefinite and positive

definite ones. An operator A is positive semidefinite (resp., positive definite), denoted

by A ≥ 0 (resp., A > 0), if 〈Ax,x〉 ≥ 0 (resp., 〈Ax,x〉 > 0) for all vectors x

(resp., nonzero vectors x). Their spectra are then subsets of the positive real line

{t ∈ R : t ≥ 0}. A prominent property of positive operators A is the existence of

their positive square roots A1/2. A partial order among the Hermitian operators can

be defined via the positive ones, namely, if A and B are Hermitian, then A ≤ B

means that B − A ≥ 0. Negative semidefinite (resp., negative definite) operators,

denoted by A ≤ 0 (resp., A < 0), can be defined similarly. Every Hermitian operator

A can be decomposed as A1 ⊕ A2 with A1 ≥ 0 and A2 < 0.

An idempotent Hermitian operator P on H (P 2 =P =P ∗) is called an (orthog-

onal) projection, in which case its range K is closed. To emphasize this, we also

denote the operator as PK . Depending on the context, we may consider PK as an

operator on H or an operator from H to K .

If K is a subspace of H , then any operator A on H can be expressed as
[
A1
A3

A2
A4

]

on H = K ⊕ K⊥, where A1 = PKA|K , A2 = PKA|K⊥, A3 = PK⊥A|K , and

A4 = PK⊥A|K⊥.

A subspace K of H is said to be invariant under A if AK ⊆ K . In this case, A can

be expressed as
[
A1
0

A2
A4

]
on H = K ⊕ K⊥, where A1 = A|K . If K and K⊥ are

both invariant under A, then we say that K is a reducing subspace of A or it reduces

A, in which case we may express A as A1 ⊕ A4 with A1 = A|K and A4 = A|K⊥.

An operator A on H is (unitarily) reducible if it has a reducing subspace other

than the trivial ones {0} and H ; otherwise, it is (unitarily) irreducible. The usual

way to check the irreducibility of A is to show that the only (orthogonal) projections

commuting with A are 0 and I .

An operator U is unitary if U∗U = UU∗ = I . Two operators A and B are unitarily

similar (resp., similar) if UA = BU (resp., XA = BX) for some unitary U (resp.,

invertible X). More general than the unitary operators are the isometries. An operator

V is an isometry if ‖V x‖ = ‖x‖ for all x or V ∗V = I . The norm of V is always

equal to 1. Besides the unitaries, the unilateral shifts are also isometries. These are

operators SK defined by SK(
∑∞

n=0 ⊕xn) = 0 ⊕ (
∑∞

n=1 ⊕xn−1) on
∑∞

n=0 ⊕K . If

dim K = 1, then SK , abbreviated as S, is the simple unilateral shift and can be

considered as acting on ℓ2 by S(x0,x1,x2, . . .) = (0,x0,x1, . . .). More generally, if

K is a separable space of dimension k, 1 ≤ k ≤ ∞, then SK is unitarily similar to∑k
j=1 ⊕S. In contrast, the bilateral shift WK (resp., simple bilateral shift W ), which

is unitary, is the operator WK(
∑∞

n=−∞⊕xn) =
∑∞

n=−∞⊕xn−1 on
∑∞

n=−∞⊕K

(resp., W(. . . ,x−1,x0,x1, . . .) = (. . . ,x−2,x−1,x0,x1, . . .) on ℓ2(Z) with the 0th

component underlined). The Wold decomposition says that any isometry can be

decomposed as U ⊕ SK for some unitary U and unilateral shift SK .

A unilateral (resp., bilateral) weighted shift A with bounded weights wn, n ≥ 0

(resp., −∞ < n < ∞), is the operator A(x0,x1,x2, . . .) = (0,w0x0,w1x1, . . .) on
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I.3 Special Types of Operators 5

ℓ2 (resp., A(. . . ,x−1,x0,x1, . . .) = (. . . ,w−2x−2,w−1x−1,w0x0, . . .) on ℓ2(Z)). In

matrix forms, these are

⎡
⎢⎢⎢⎣

0

w0 0

w1 0

. . .
. . .

⎤
⎥⎥⎥⎦ and

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .

. . . 0

w−1 0

w0 0

w1 0

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

respectively.

A partial isometry V is one which is isometric on (ker V )⊥. Such operators play

a prominent role in the polar decomposition of operators, which says that every

operator A can be factored as V (A∗A)1/2 for some partial isometry V . Here V is in

general not unique; it is if we further require that (ker V )⊥ = ran A∗ or, equivalently,

ker V = ker A. Another frequently used form of polar decomposition, when ker A

and ker A∗ have equal dimensions, is A = U(A∗A)1/2 with unitary U .

An operator A is normal if A∗A = AA∗. Examples of normal operators are

diagonal operators diag (a0,a1,a2, . . .) on ℓ2 with an’s as diagonals and, more

generally, multiplication operators Mφ on L2(μ). The spectral theorem for normal

operators says that every normal operator is unitarily similar to a multiplication

operator (cf. [130, Theorem IX.4.6 and Proposition IX.4.7]).

Theorem 3.1 If A is a normal operator on H , then there is a positive measure μ

on a σ -algebra of subsets of a set and a function φ in L∞(μ) such that A is unitarily

similar to the multiplication operator Mφ on L2(μ) defined by Mφf = φf for f in

L2(μ). Moreover, if H is separable, then μ is σ -finite.

Operator A is quasinormal if it commutes with A∗A. A subnormal A on H is the

restriction of a normal operator N on K to one of its invariant subspaces H . The

normal N is unique up to unitary similarity, called the minimal normal extension

of A, if we further require that N be minimal in the sense that any space in between

H and K which reduces N must be equal to K . As an example, the (simple) bilateral

shift is the minimal normal extension of the (simple) unilateral shift.

A hyponormal operator A is defined by the property A∗A ≥ AA∗. For such an

operator, we have ‖An‖ = ‖A‖n for all n ≥ 1 and therefore ‖A‖ = ρ(A) by

Gelfand’s formula. It is known that hyponormal operators properly contain subnor-

mal operators and subnormal operators properly contain normal operators.

Finally, we come to compact operators. An operator A on H is compact if the

closure of the image of {x ∈ H : ‖x‖ ≤ 1} under A is compact in H . A is a finite-

rank operator if the closure of ran A is finite dimensional. Finite-rank operators are

easily seen to be compact. Moreover, any compact operator can be approximated in

the operator norm by a sequence of finite-rank operators (even on a nonseparable

space). Besides the finite-rank ones, other notable examples of compact operators
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6 Introduction

are diagonal operators diag (a0,a1,a2, . . .) on ℓ2 with an → 0 and the Volterra

operator (Vf )(x) =
∫ x

0 f (t)dt for f in L2[0,1]. Their spectra are {a0,a1,a2, . . . ,0}

and {0}, respectively. According to a result of F. Riesz (cf. [130, Theorem VII.7.1]),

the spectra of these three types of operators are representative of those of general

compact operators on an infinite-dimensional space. For p ≥ 1, the Schatten p-class

Cp consists of compact operators A for which the eigenvalues sn, n ≥ 1, of (A∗A)1/2

are such that
∑

n s
p
n < ∞. The trace-class and Hilbert–Schmidt operators are the

ones in C1 and C2, respectively.

I.4 Matrix Theory

The class of n-by-n complex matrices is denoted by Mn(C) or simply by Mn. The

n-by-n zero and identity matrices are 0n and In, respectively. We also use 0m,n to

denote the m-by-n zero matrix. For the complex matrix A = [aij ]ni,j=1, its adjoint

and transpose are A∗ = [aj i]
n
i,j=1 and AT = [aj i]

n
i,j=1, respectively. A is Hermitian

(resp., symmetric) if A = A∗ (resp., A = AT ). We use det A and tr A for its

determinant and trace. The characteristic polynomial pA and minimal polynomial

mA of A are defined as pA(z) = det(zIn−A) and the monic polynomial with smallest

degree for which mA(A) = 0n. It is known that mA always divides pA and their zeros

both constitute the eigenvalues of A. The algebraic (resp., geometric) multiplicity of

an eigenvalue λ of A is the multiplicity of λ as a zero of pA (resp., the dimension of

ker(λIn − A)). The algebraic multiplicity of an eigenvalue is always bigger than or

equal to its geometric multiplicity. Under similarity, every matrix can be transformed

to the Jordan form or the rational form. These canonical forms are built up by taking

direct sums of matrices of a special type, namely,

⎡
⎢⎢⎢⎢⎣

λ 1

λ
. . .

. . . 1

λ

⎤
⎥⎥⎥⎥⎦

and

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1

0
. . .

. . . 1

0 1

−an −an−1 · · · −a2 −a1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

respectively. The former with λ = 0, denoted by Jn, is call a Jordan block and the

latter companion matrix. On the other hand, via the unitary similarity, every matrix

can be transformed to an upper-triangular one.

A matrix A = [aij ]ni,j=1 is nonnegative (resp., positive) if aij ≥ 0 (resp., aij > 0)

for all i and j , which we denote by A � 0n (resp., A ≻ 0n). A permutation matrix

is such that each of its rows and columns has exactly one component equal to 1 and

all others equal to 0. Two matrices A and B of the same size are permutationally

similar if there is a permutation matrix P such that P T AP = B. An n-by-n matrix

A is (permutationally) reducible (not to be confused with (unitary) reducibility)
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I.5 C∗-Algebra Theory 7

if n ≥ 2 and it is permutationally similar to a matrix of the form
[
B
0

C
D

]
with

square matrices B and D; otherwise, A is (permutationally) irreducible. Thus a

positive matrix is always irreducible. The classical Perron–Frobenius theorem gives

rather precise information on the extremum eigenvalues of irreducible nonnegative

matrices. In particular, if A is such a matrix, then ρ(A) > 0 is an eigenvalue of A with

algebraic multiplicity equal to 1 and having an associated eigenvector with positive

components (cf. [315, Theorem 8.4.4]).

I.5 C
∗-Algebra Theory

A normed space X over C is a complex vector space with a norm ‖ · ‖ satisfying (a)

‖x‖ = 0 if and only if x = 0, (b) ‖ax‖ = |a|‖x‖, and (c) ‖x + y‖ ≤ ‖x‖ + ‖y‖ for

all a in C and x and y in X. It is a Banach space if the metric induced by its norm is

complete. The celebrated Hahn–Banach theorem is one of the fundamental results in

functional analysis.

Theorem 5.1 Let X be a normed space and Y a linear submanifold of X. If

f : Y → C is a bounded linear functional, then f can be extended to a bounded

linear functional F : X → C such that ‖F‖ = ‖f ‖.

This can be found, together with many of its ramifications, in [130, Section III.6].

For a normed space X, its dual X∗ is the Banach space consisting of all bounded

linear functionals f : X → C on X. In X∗, a net {fα} is said to converge to f in the

weak-star topology if fα(x) → f (x) for all x in X. The next theorem is the most

important property of this topology: Alaoglu’s theorem. It is in [130, Theorem V.3.1].

Theorem 5.2 For a normed space X, the set {f ∈ X∗ : ‖f ‖ ≤ 1} is weak-star

compact.

A Banach algebra A over C is an algebra with a norm ‖ · ‖ which makes it a

Banach space and satisfies ‖ab‖ ≤ ‖a‖‖b‖ for all a and b in A. A C∗-algebra

A is a Banach algebra with an involution a∗ for any a in A satisfying a∗∗ = a,

(αa + βb)∗ = αa∗ + βb∗, (ab)∗ = b∗a∗, and ‖a∗a‖ = ‖a‖2 for all a and b in

A and α and β in C. Examples of C∗-algebras are B(H) and the Calkin algebra

B(H)/K(H) for Hilbert spaces H (cf. Section I.6). Basic properties of C∗-algebras

can be found in [130, Chapter VIII].

In Section 1.2, we would need the Berberian representation for operators on H .

This is a useful tool in proving an asymptotic result by reducing it to its exact version.

Theorem 5.3 For any Hilbert space H , there is another space K which contains H

and a unital ∗-isomorphism α from B(H) to B(K) such that the following hold for

all A in B(H):

(a) A = α(A)|H ,

(b) ‖A‖ = ‖α(A)‖,
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8 Introduction

(c) α(A) attains its norm, that is, there is a unit vector x in K such that ‖α(A)x‖ =

‖α(A)‖,

(d) σ(A) = σ
(
α(A)

)
, and

(e) σap(A) = σap

(
α(A)

)
= σp

(
α(A)

)
.

This was proved in [45], where the constructions of K and α made use of the

Banach limit, which we sketch as follows. An analogous construction was considered

by Calkin [94] even earlier.

Let ℓ∞ be the Banach algebra {(x0,x1,x2, . . .) : xn ∈ C for all n, supn |xn| < ∞}

equipped with the supremum norm ‖ ·‖∞, and let c consist of (x0,x1, . . .) in ℓ∞ such

that limn xn exists.

Theorem 5.4 There is a linear functional L : ℓ∞→C such that, for

x = (x0,x1, . . .) in ℓ∞,

(a) ‖L‖ ≡ sup{|L(x)| : x ∈ ℓ∞,‖x‖∞ = 1} equals 1,

(b) L(x) = limn xn if x is in c,

(c) L(x) ≥ 0 if xn ≥ 0 for all n, and

(d) L(x) = L(x′), where x′ = (x1,x2, . . .).

This is proved in [130, Theorem III.7.1] using the Hahn–Banach theorem.

Here is a brief sketch of the proof of Theorem 5.3. Let X be the vector space

consisting of sequences x̃ = (x0,x1, . . .) of bounded vectors xn in H with the

usual componentwise addition and scalar multiplication. Let L : ℓ∞ → C be

any Banach limit. For x̃ = (x0,x1, . . .) and ỹ = (y0,y1, . . .) in X, the sequence

(〈x0,y0〉,〈x1,y1〉, . . .) is in ℓ∞. Hence we may define φ : X × X → C by

φ(̃x,ỹ) = L(〈x0,y0〉,〈x1,y1〉, . . .). It is easily checked that φ(·,·) is a semi-inner

product on X. Let X0 = {̃x ∈ X: φ(x̃,x̃) = 0}. Using the Cauchy–Schwarz

inequality, we obtain that φ(̃x,x̃) = 0 if and only if φ(̃x,ỹ) = 0 for all ỹ in X. Hence

X0 is a vector subspace of X. Let Y denote the quotient space X/X0 with the inner

product 〈̃x+X0,ỹ+X0〉 = φ(̃x,ỹ), and let K be the completion of Y with respect to

the induced norm. Then K is a Hilbert space. Define α : B(H) → B(K) by letting,

for any A in B(H), the operator α(A) on K be given by α(A)((x0,x1, . . .) + X0) =

(Ax0,Ax1, . . .)+ X0 for any (x0,x1, . . .) in X. Then α is a unital ∗-isomorphism. Let

i : H → K be the linear isometry sending an element x in H to the corresponding

(x,x, . . .) + X0 in K . Then we may identify H with its image i(H) in K and,

under this identification, we obtain (a). Parts (b) and (d) follow from the general

C∗-algebra theory. To prove (c), let xn, n ≥ 0, be a sequence of unit vectors in

H such that ‖Axn‖ → ‖A‖ as n → ∞, and let x̃ = (x0,x1, . . .) in X. Then

‖x̃+X0‖ = 1 and ‖α(A)(̃x+X0)‖
2 = L(‖Ax0‖

2,‖Ax1‖
2, . . .) = ‖A‖2 = ‖α(A)‖2.

This proves (c). For (e), σap(A) = σap

(
α(A)

)
is an easy consequence of the fact that

z is not in σap(A) if and only if (A − zI)∗(A − zI) ≥ εI for some ε > 0, and

σap(A) ⊆ σp

(
α(A)

)
can be proved in a similar fashion as for (c).
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I.7 Compression and Dilation 9

I.6 Fredholm Theory

For an infinite-dimensional space H , let K(H) be the set of all compact operators

on H . It forms a self-adjoint ideal in B(H). Thus we can consider the quotient C∗-

algebra C(H) ≡ B(H)/K(H), called the Calkin algebra of H . If π : B(H) → C(H)

is the quotient map, then the essential spectrum σe(A) of an operator A on H is

simply the spectrum of the image π(A) of A in the Calkin algebra. An operator A is

said to be Fredholm if there are operators B1 and B2 and compact operators K1 and

K2 such that B1A = I + K1 and AB2 = I + K2. In terms of the Calkin algebra, this

means that π(A) is invertible in C(H). Thus σe(A) can also be phrased as the subset

{λ ∈ C : A−λI not Fredholm} of C. The left (resp., right) essential spectrum σle(A)

(resp., σre(A)) of A and the left-Fredholm (resp., right-Fredholm) operators can be

defined similarly. Obviously, σe(A) ⊆ σ(A), σle(A) ⊆ σl(A), σre(A) ⊆ σr(A), and

A is compact if and only if σe(A) = {0}. Just as the containment ∂σ(A) ⊆ σl(A) ∩

σr(A), which relates the three spectra of A, there is a corresponding essential one,

namely, ∂σe(A) ⊆ σle(A)∩σre(A). In Section 1.2, we will encounter an improvement

of these due to Putnam (cf. [130, Theorem XI.6.8 and Proposition XI.6.9]).

Theorem 6.1 Let A be an operator on the infinite-dimensional H . If λ is in ∂σ(A),

then either λ is an isolated point of σ(A) which is a reducing eigenvalue of A with

finite multiplicity or λ is in σle(A) ∩ σre(A).

It is known that A is left Fredholm (resp., right Fredholm) if and only if ran A

is closed and dim ker A < ∞ (resp., ran A is closed and dim ker A∗ < ∞). If A is

either left Fredholm or right Fredholm, then its Fredholm index, ind A, is defined by

dim ker A − dim ker A∗ with values in Z ∪ {±∞}. The main result of the Fredholm

index is in the following theorem [130, Theorem XI.3.7].

Theorem 6.2 If A and B are left Fredholm (resp., right Fredholm), then so is AB

and ind AB = ind A+ ind B.

Other properties of the Fredholm index can be found in [130, Section XI.3].

I.7 Compression and Dilation

If A is an operator on H and K a subspace of H , then the compression of A to K is

the operator B = PKA|K on K , where PK denotes the (orthogonal) projection from

H onto K . In this case, we also say that A is a dilation of B. In matrix form, this

simply means that A =
[
B
∗
∗
∗

]
on H = K ⊕ K⊥. Compression and dilation can

also be expressed in a slightly more general way by taking into account the unitary

similarity, namely, A on H is a dilation of B on K (equivalently, B is a compression

of A) if B = V ∗AV for some operator V from H to K satisfying V ∗V = IK .
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10 Introduction

A Toeplitz operator Tφ , where φ is an essentially bounded function (with respect

to the Lebesgue measure) on ∂D, is the compression of the multiplication operator

Mφ on L2(∂D) to H 2. Relative to the standard basis {en(e
iθ ) = einθ : θ real ,n ≥ 0}

of H 2, Tφ can be represented as a Toeplitz matrix

⎡
⎢⎢⎢⎢⎢⎣

a0 a−1 a−2

a1 a0 a−1
. . .

a2 a1 a0
. . .

. . .
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎦

,

where the an’s are the Fourier coefficients of φ. In case when φ(eiθ ) = eiθ , the

corresponding Toeplitz operator is just the simple unilateral shift. Properties of such

operators are in [290, Chapter 25].

An operator A is a contraction (resp., strict contraction) if ‖A‖ ≤ 1 (resp.,

‖A‖ < 1). For contractions on a Hilbert space, there is a rich dilation theory. It all

started with the Halmos dilation, which says that every contraction can be dilated to

a unitary operator (cf. [290, Problem 227]). The Sz.-Nagy dilation theorem gives a

much stronger and more useful dilation result.

Theorem 7.1 If A is a contraction on H , then there is a unitary operator U on

a space K containing H such that An = PH Un|H for all n ≥ 1. Moreover, U is

unique up to unitary similarity if we further require that K =
∨∞

n=−∞ UnH .

A contraction is completely nonunitary if it has no unitary summand. Every

contraction can be decomposed as the direct sum of a unitary operator and a

completely nonunitary one. If A is a completely nonunitary contraction on H and f

is a function in the Hardy space H∞ of bounded analytic functions on D, then f (A)

can be defined, which makes up a functional calculus f !→ f (A) from H∞ to B(H)

(cf. [539, Section III.2]). Centered around the Sz.-Nagy dilation, a whole branch of

operator theory was developed by Sz.-Nagy and Foiaş in the 1960s and 1970s, which

resulted in a functional model for the class of completely nonunitary contractions

(cf. [539]). In Chapter 7 of this book, we will be mainly concerned with the class of

Sn-matrices, which is the n-dimensional version of the compressions of the unilateral

shift. An n-by-n matrix A is said to be of class Sn if ‖A‖ ≤ 1, σ(A) ⊆ D

and rank (In − A∗A) = 1, that is, A is a completely nonunitary contraction on an

n-dimensional space with its defect index equal to one. Such matrices, or rather the

general compressions of the shift, are the building blocks for the Jordan model of

C0 contractions from the Sz.-Nagy–Foiaş dilation theory (cf. [539, Section III.4]

and [49]).
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