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Introduction

These lecture notes are centered around two open problems, one formulated

by Alain Connes in his famous 1976 paper [61], the other one by Eberhard

Kirchberg in his landmark 1993 paper [155]. At first glance, these two

problems seem quite different and the proof of their equivalence described

at the end of [155] is not so easy to follow. One of our main goals is to explain

in detail the proof of this equivalence in an essentially self-contained way.

The Connes problem asks roughly whether traces on “abstract” von Neumann

algebras can always be approximated (in a suitable way) by ordinary matrix

traces. The Kirchberg problem asks whether there is a unique C∗-norm on the

algebraic tensor product C ⊗C when C is the full C∗-algebra of the free group

F∞ with countably many generators.

In the remarkable paper where he proved the equivalence, Kirchberg studied

more generally the pairs of C∗-algebras (A,B) for which there is only one

C∗-norm on the algebraic tensor product A ⊗ B. We call such pairs “nuclear

pairs.” A C∗-algebra A is traditionally called nuclear if this holds for any

C∗-algebra B. Our exposition chooses as its cornerstone Kirchberg’s theorem

asserting the nuclearity of what is for us the “fundamental pair,” namely the

pair (B,C ) where B = B(ℓ2) (see Theorem 9.6). Our presentation leads

us to highlight two properties of C∗-algebras, the Weak Expectation Property

(WEP) and the Local Lifting Property (LLP).

The first one is a weak sort of extension property (or injectivity) while

the second one is a weak sort of lifting property. The connection with the

fundamental pair is very clear: A has the WEP (resp. LLP) if and only if

the pair (A,C ) (resp. (A,B)) is nuclear. With this terminology, the Kirchberg

problem reduces to proving the implication LLP ⇒ WEP, but there are many

more interesting reformulations that deserve mention and we will present them

in detail. For instance this problem is equivalent to the question whether every

(unital) C∗-algebra is a quotient of one with the WEP, or equivalently, in short,
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2 Introduction

is QWEP. In passing, although the P stands for property, we will sometimes

write for short that A is WEP (or A is LLP) instead of A has the WEP

(resp. LLP).

Incidentally, since Kirchberg (unlike Connes) explicitly conjectured a

positive answer to all these equivalent questions in [155], we often refer to

them as his conjectures.

One originality of our treatment (although already present in [155]) is that

we try to underline the structural properties (or their failure), such as injectivity

or projectivity, in parallel for the minimal and the maximal tensor product of

C∗-algebras. This preoccupation can be traced back to the “fundamental pair”

itself: Indeed, we may view B as “injectively universal” and C as “projectively

universal.” The former because any separable C∗-algebra A is a subalgebra of

B, the latter because any such A is a quotient of C (see Proposition 3.39).

In particular, we will emphasize the fact that the minimal tensor product

is injective but not projective, while the maximal one is projective but not

injective (see §7.4 and 7.2). This is analogous to the situation that prevails

for the Banach space tensor products in Grothendieck’s classical work, but

unlike Banach space morphisms (i.e. bounded linear maps) the C∗-algebraic

morphisms are automatically isometric if they are injective (see Proposition

A.24). The lack of injectivity of the max-norm is a rephrasing of the fact

that if B1 ⊂ B2 is an isometric (or equivalently injective) ∗-homomorphism

between C∗-algebras and A is another C∗-algebra, it is in general not true that

the resulting ∗-homomorphism

A ⊗max B1 → A ⊗max B2 (1)

is isometric (or equivalently injective). This means that the norm induced by

A ⊗max B2 on the algebraic tensor product A ⊗ B1 is not equivalent to the

max-norm on A ⊗ B1. In sharp contrast, this does not happen for the min-

norm: A ⊗min B1 → A ⊗min B2 is always injective (=isometric), and this is

why one often says that the minimal tensor product is “injective.”

This “defect” of the max-tensor product leads us to single out the class of

inclusions, B1 ⊂ B2, for which this defect disappears (i.e. (1) is injective for

any A). We choose to call them “max-injective.” We will see that this holds if

and only if there is a projection P : B∗∗
2 → B∗∗

1 with ‖P‖ = 1. We will also

show that if (1) is injective for A = C then it is injective for all A.

It turns out that a C∗-algebra A is WEP if and only if the embedding

A ⊂ B(H) is max-injective or, equivalently, if and only if there is a projection

P : B(H)∗∗ → A∗∗ with ‖P‖ = 1. All these facts have analogues for the

min-tensor product, but now its “defect” is the failure of “projectivity,” meant

in the following sense: Let q : B1 → B2 be a surjective ∗-homomorphism

and let A be any C∗-algebra. Let I = ker(q). Then, although the associated
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∗-homomorphism qA : A ⊗min B1 → A ⊗min B2 is clearly surjective (indeed,

it suffices for that to have a dense range), its kernel may be strictly larger

than A ⊗min I. As a result, the min-norm on the algebraic tensor product

A ⊗ B2 (= A ⊗ (B1/I)) may be much smaller than the norm induced on

it by (A⊗min B1)/(A⊗min I). In sharp contrast, this “defect” does not happen

for the max-norm and we always have an isometric identification

A ⊗max (B1/I) = (A ⊗max B1)/(A ⊗max I).

Again this defect of the min-norm leads us to single out the quotient maps (i.e.

the surjective ∗-homomorphisms) q : B1 → B2 for which the defect does not

appear, i.e. the maps such that for any A we have an isometry

A ⊗min B2 = (A ⊗min B1)/(A ⊗min I). (2)

Here again, we can give a rather neat characterization of such maps, this time

as a certain form of lifting property, see §7.5. It turns out that if (2) holds for

A = B then it holds for all C∗-algebras A. We call such a map q a “min-

projective surjection.” The usual terminology to express that (2) holds for any

A is that B1 viewed as an extension of B2 by I is a “locally split extension” (we

prefer not to use this term). This notion is closely connected with the notion of

exact C∗-algebra.

A C∗-algebra A is called exact if (2) holds for any surjective q : B1 → B2.

This “exact” terminology is motivated by the fact that (2) holds if and only if

the sequence

0 → A ⊗min I → A ⊗min B1 → A ⊗min B2 → 0

is exact. But actually, for C∗-algebras, the exactness of that sequence boils

down to the fact that the natural ∗-homomorphism

A ⊗min B1

A ⊗min I
→ A ⊗min B2

is isometric (=injective).

Although our main interest is in C∗-algebras, it turns out that many results

have better formulations (and sometimes better proofs) when phrased using

linear subspaces of C∗-algebras (the so-called operator spaces) or unital self-

adjoint subspaces (the so-called operator systems). It is thus natural to try to

describe as best as we can the class of linear transformations that preserve the

C∗-tensor products. For the minimal norm, it is well known that the associated

class is that of completely bounded (c.b.) maps. More precisely, given a linear

map u : A → B between C∗-algebras we have for any C∗-algebra C

‖IdC ⊗ u : C ⊗min A → C ⊗min B‖ ≤ ‖u‖cb (3)
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4 Introduction

where ‖u‖cb is the c.b. norm of u. Moreover, the sup over all C of the left-

hand side of (3) is equal to ‖u‖cb, and it remains unchanged when restricted to

C ∈ {Mn | n ≥ 1}. The space of such maps is denoted by CB(A,B).

The mapping u is called completely positive (in short c.p.) if IdC ⊗
u : C ⊗min A → C ⊗min B is positive (=positivity preserving) for any C,

and to verify this we may restrict to C = Mn for any n ≥ 1. The cone formed

of all such maps is denoted by CP(A,B).

For the max tensor product, there is an analogue of (3) but the corresponding

class of mappings is smaller than CB(A,B). These are the decomposable maps

denoted by D(A,B), defined as linear combinations of maps in CP(A,B).

More precisely, for any u as previously we have

‖IdC ⊗ u : C ⊗max A → C ⊗max B‖ ≤ ‖u‖dec, (4)

where ‖u‖dec is the norm in D(A,B). Moreover, the supremum over all C

of the left-hand side of (4) is equal to the dec-norm of u composed with the

inclusion B ⊂ B∗∗. The dec-norm was introduced by Haagerup in [104]. We

make crucial use of several of the properties established by him in the latter

paper. See Chapter 6.

The third class of maps that we analyze are the maps u : A → B such that

for any C

‖IdC ⊗ u : C ⊗min A → C ⊗max B‖ ≤ 1.

This holds if and only if u is the pointwise limit of a net of finite rank maps

with ‖u‖dec ≤ 1 (see Proposition 6.13). When u is the identity on A this means

that A has the c.p. approximation property (CPAP) which, as is by now well

known, characterizes nuclear C∗-algebras (see Corollary 7.12).

More generally, suppose given two C∗-norms α and β, defined on A⊗B for

any pair (A,B). We denote by A⊗α B (resp. A⊗β B) the C∗-algebra obtained

after completion of A ⊗ B equipped with α (resp. β).

Then we say that a linear map u : A → B between C∗-algebras is (α → β)-

tensorizing if for any C∗-algebra C

‖IdC ⊗ u : C ⊗α A → C ⊗β B‖ ≤ 1.

In §7.1 we describe the factorizations characterizing such maps in all the cases

when α and β are either the minimal or the maximal C∗-norm. We also include

the case when u is only defined on a subspace E ⊂ A using the norm induced

on C ⊗ E by C ⊗α A. The main cases of interest are min → max (nuclearity)

and max → max (decomposability). For the former, we refer to Chapter 10,

where we characterize nuclear C∗-algebras in parallel with exactness.

The bidual A∗∗ of a C∗-algebra A is isomorphic to a von Neumann algebra.

In Chapter 8 we study the relations between C∗-norms on A and on A∗∗
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Introduction 5

and we describe the biduals of certain C∗-tensor products. The notion of

local reflexivity plays an important role in that respect. We prove in §8.3 the

equivalence of the injectivity of A∗∗ and the nuclearity of A. In Corollary

7.12 (proved in §10.2) we show that for C∗-algebras nuclearity is equivalent

to the completely positive approximation property (CPAP). We also show in

Theorem 8.12 that injective von Neumann algebras are characterized by a

weak* analogue of the CPAP, which is sometimes called “semidiscreteness.”

But our main emphasis is on nuclear pairs: in §9.1 we prove the nuclearity

of the fundamental pair (B,C ) and in the rest of Chapter 9 we give various

equivalent characterizations of C∗-algebras with the properties WEP, LLP,

and QWEP, that we choose to define using nuclear pairs. The main ones are

formulated using the bidual A∗∗ of a C∗-algebra A (see §8.1). Let iA : A →
A∗∗ be the natural inclusion. For instance:

(i) A is nuclear if and only if for some (or any) embedding A∗∗ ⊂ B(H)

there is a projection P : B(H) → A∗∗ with ‖P‖cb = 1.

(ii) A is WEP if and only if for some (or any) embedding A ⊂ B(H) there is

a projection P : B(H)∗∗ → A∗∗ with ‖P‖cb = 1.

(iii) A is QWEP if and only if for some embedding A∗∗ ⊂ B(H)∗∗ there is a

projection P : B(H)∗∗ → A∗∗ with ‖P‖cb = 1.

We then come to the central part of these notes: the Connes embedding

problem whether any tracial probability space embeds in an ultraproduct of

matricial ones (Chapter 12) and the Kirchberg conjecture (Chapter 13) that C

is WEP or that every C∗-algebra is QWEP. We show that they are equivalent

in Chapter 14. We also show the equivalence with a well-known conjecture

from Banach space theory (Chapter 15). The latter essentially asserts that every

von Neumann algebra is isometric (as a Banach space) to a quotient of B(H)

for some H . In yet another direction we show in Chapter 16 that all these

conjectures are equivalent to one formulated by Tsirelson in the context of

quantum information theory.

In one of its many equivalent forms, Kirchberg’s conjecture reduces to

LLP ⇒ WEP for C∗-algebras. Actually, he originally conjectured also the

converse implication but in Chapter 18 we show that this fails, by producing

tensors t ∈ B ⊗ B for which the min and max norms are different;

in other words the pair (B,B) is not nuclear. The proof combines ideas

from finite-dimensional operator space theory (indeed t ∈ E ⊗ F for some

finite-dimensional subspaces E,F of B) together with estimates of spectral

gaps, that allow us to show that a certain constant C(n) defined next is <n

for some n. The latter constant involves a sequence of integers Nm and a

sequence (u1(m), . . . ,un(m)) of n-tuples of unitary Nm × Nm-matrices and

their complex conjugates (u1(m), . . . ,un(m)). We then set
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6 Introduction

C(n) = inf
{

sup
m�=m′

∥

∥

∥

∑n

1
uj (m) ⊗ uj (m

′)
∥

∥

∥

}

, (5)

where the last norm is meant in MNmNm′ and the infimum runs over all

possible sizes (Nm) and all possible sequences (u1(m), . . . ,un(m)) of n-tuples

of unitary Nm × Nm-matrices.

Using unitary random matrices we will show that C(n) = 2
√

n − 1

(see §18.2). Nevertheless other more explicit (deterministic) constructions of

sequences (u1(m), . . . ,un(m)) responsible for C(n) < n are of much interest

such as property (T) groups, expanders, quantum expanders, or quantum

analogues of spherical coding sequences. In each case we obtain a tensor

t ∈ B ⊗ B such that ‖t‖min < ‖t‖max. We describe these delicate ingredients

in Chapter 19.

In Chapter 20, we gather several applications of the preceding ideas to the

structure of the metric space of all finite-dimensional operator spaces equipped

with the cb-analogue of the Banach–Mazur “distance,” that is defined when

dim(E) = dim(F ) by

dcb(E,F ) = inf{‖u‖cb‖u−1‖cb | u : E → F invertible}.

For instance, for any finite-dimensional operator space E, the dual space E∗

admits a natural operator space structure (described in §2.4) so that we may

view both E and E∗ as subspaces of B. Thus the identity operator on E defines

a tensor tE ∈ B ⊗ B. We show that (see (20.6))

‖tE‖B⊗maxB
= inf{dcb(E,F ) | F ⊂ C }

where the infimum (which is actually attained) runs over all possible subspaces

F ⊂ C with dim(F ) = dim(E).

The fact that (B,B) is not a nuclear pair actually implies that for arbitrary

von Neumann algebras (M,N) the pair (M,N) is nuclear only if either M or N

is nuclear. This follows from the fact that a nonnuclear von Neumann algebra

must contain as a subalgebra the direct sum in the sense of ℓ∞ of the family

{Mn | n ≥ 1} of all matrix algebras, and there is automatically a conditional

expectation onto it. The latter is explained in §12.6.

In Chapter 23 we present in detail two unpublished characterizations of the

WEP due to Haagerup. The first one says that a C∗-algebra A has the WEP

if and only if for any n and any linear map u : ℓn
∞ → A the dec-norm of u

coincides with its c.b. norm (see §23.2). This naturally complements his earlier

results from the 1980s in [104]. Haagerup claimed this theorem at some point

in the 1990s but apparently did not circulate a detailed proof of it, as he did for

the second (more delicate) one, that we give in §23.5.
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There, to put it very roughly ℓn
∞ is replaced by ℓn

2 . More precisely, the

second characterization says that A has the WEP if and only if for any n and

any (a1, . . . ,an) ∈ An we have
∥

∥

∥

∑

aj ⊗ aj

∥

∥

∥

1/2

min
=

∥

∥

∥

∑

aj ⊗ aj

∥

∥

∥

1/2

max
.

An important ingredient for its proof is the identification, for any C∗-algebra

A, of the norm

An ∋ (aj ) �→
∥

∥

∥

∑

aj ⊗ aj

∥

∥

∥

1/2

max

as the norm obtained on An (n ≥ 1) by the complex interpolation method of

parameter θ = 1/2 between the (“row and column”) norms

(aj ) �→
∥

∥

∥

∑

aj
∗aj

∥

∥

∥

1/2
and (aj ) �→

∥

∥

∥

∑

ajaj
∗
∥

∥

∥

1/2
.

In order to give a reasonably self-complete proof of the latter fact we give a

brief basic description of complex interpolation in Chapter 22.

One important consequence of this particular characterization is the

fact that the WEP is stable under complete isomorphisms. Explicitly, if

two C∗-algebras A,B are completely isomorphic as operator spaces, then

A WEP ⇒ B WEP. In other words, if we forget the algebraic structure of a

C∗-algebra, the WEP is “remembered” by its operator space structure.

In a similar flavor (see Chapter 23), let M ⊂ M be von Neumann algebras,

if there is a completely bounded projection P : M → M onto M (i.e. M is

“completely complemented” in M) then there is a projection Q : M → M

that is completely positive with ‖Q‖cb = 1. Thus when M = B(H) we

conclude that M is injective.

In Chapter 24 we show that the tensor product M ⊗min N of two nonnuclear

von Neumann algebras M and N (for instance for M = N = B) fails the

WEP (see Corollary 24.23). The proof is reminiscent of the earlier proof that

(M,N) is not a nuclear pair. It makes crucial use of the constant that we denote

by C0(n), that is defined in the same way as C(n) in (5), but using unitaries

associated to permutations instead of plain unitary matrices and restricting

them to the orthogonal of the constant vector. Again, the key point is that

C0(n) < n. We review the recent results that establish the latter. In analogy

with the case of C(n) we can show that C0(n) = 2
√

n − 1 using a very recent

result on random permutation matrices, and also that C0(3) < 3 by delicate

deterministic arguments: we can use either Selberg’s famous spectral bound or

known results on expanders in permutation groups.

Lastly, in Chapter 25 we gather a collection of open questions related to our

main topics.
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Prerequisites. These notes are written in a rather detailed style and should

be accessible to graduate students and nonspecialists. The prerequisite back-

ground is kept to a minimum. Of course basic functional analysis is needed,

but for operator algebras, the fundamental theorems we use are the classical

ones, such as the bicommutant theorem and Kaplansky’s Theorem, as well as

basic facts about states, ∗-homomorphisms and the GNS construction, and we

review all those in this book’s Appendix.

Sources. The main source for these notes is Kirchberg’s fundamental paper

[155]. However, we have made extensive use of Haagerup’s treatment of

decomposable maps in [104]. This allowed us to reformulate many results

known for completely positive maps or ∗-homomorphisms for just linear

maps. In addition, Ozawa’s surveys [189, 191, 192] have been an invaluable

help and inspiration, as well as the (highly recommended) book [39] by Brown

and Ozawa.

Many of Kirchberg’s results on exactness are already presented in detail in

Simon Wassermann’s excellent 1994 notes [258], the present volume can be

viewed as a sequel and an updated complement to his.

Almost all chapters are followed by a Notes and Remarks section where we

try to complement the references given in the text, and sometimes add some

pointers to the literature.

About operator spaces. Some results already appear in our 2003 book on

operator spaces [208]. When convenient, we used the presentation from [208].

We describe several applications of operator space theory when they are

relevant for our topic, but our main focus being here on tensor products of C∗-

algebras, we will refrain from developing operator space theory for its own

sake, and we refer the reader instead to [208], or to [80, 196].

About operator systems. Following Arveson’s pioneering papers [12], much

work (notably by Choi, Effros, and Lance) on operator systems appeared

already in the 1970s which marked a first period when much progress on

tensor products of C∗-algebras was achieved. In particular, Choi and Effros

introduced in [47] a notion of duality for operator systems that prefigured

the one for operator spaces developed after Ruan’s 1987 Ph.D. thesis. The

emphasis then moved on to operator spaces in the 1990s, and C∗-tensor

products were investigated (following Kirchberg’s impulse and Haagerup’s

work) in the more general framework of operator space tensor products, by

Effros, Ruan, Blecher, Paulsen, and others. Curiously, operator systems made

a reappearance more recently and their tensor products were investigated

thoroughly in a series of papers, notably [150, 151]. This led to several

characterizations of the WEP (see [90–92, 149, 152, 153]), connected to the

Connes–Kirchberg problem, but for lack of space (and energy) we chose not

to cover this.
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We also had to leave out the connections of the Connes–Kirchberg problem

with noncommutative real algebraic geometry, for which we refer the reader to

[40, 163] and to Ozawa’s survey [191].

Basic notation and conventions. The letter H (or H) always stands for a

Hilbert space. Our Hilbert spaces all have an inner product

(y,x) �→ 〈y,x〉

that is linear in x and antilinear in y.

We denote by B(H) (resp. K(H)) the Banach algebra formed of all the

bounded (resp. compact) linear operators on H equipped with the operator

norm.

Let K be another Hilbert space. We denote by K ⊗2 H the Hilbert space

tensor product, obtained by completing K ⊗ H equipped with the classical

scalar product characterized by

〈k ⊗ h,k′ ⊗ h′〉 = 〈k,k′〉〈h,h′〉.

We denote by K the complex conjugate Hilbert space, which is classically

identified with the dual K∗. Then K ⊗2 H can be identified with the space of

all the Hilbert–Schmidt maps from K to H .

The unitary group of a unital C∗-algebra A is denoted by U(A).

The identity map on a linear space X is denoted by IdX.

The unit ball of a normed space X is denoted by BX.

Let 1 ≤ p ≤ ∞. Let I be an arbitrary index set. We denote by ℓp(I )

the set of families of complex scalars x = (xi)i∈I such that
∑

i∈I |xi |p <

∞ (supi∈I |xi | < ∞ when p = ∞) equipped with the norm ‖x‖p =
(
∑

i∈I |xi |p)1/p (supi∈I |xi | when p = ∞).

When I = N, we denote ℓp(I ) simply by ℓp.

Let (Xi)i∈I be a family of Banach spaces. We denote by

(

⊕
∑

i∈I
Xi

)

p

their direct sum “in the sense of ℓp,” equipped with the norm (xi) �→
(
∑

‖xi‖p)1/p.

When Xi = X for all i ∈ I , we denote
(

⊕
∑

i∈I Xi

)

p
by ℓp(I ;X).

When Xi = C for all i ∈ I we recover ℓp(I ).

In the particular case when p = ∞ the space X =
(

⊕
∑

i∈I Xi

)

∞ is the set

of those x = (xi) with xi ∈ Xi (∀i ∈ I ) such that ‖x‖ = supi∈I ‖xi‖ < ∞.

The unit ball of this space X is just the product BX =
∏

i∈I BXi
.
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Let n ≥ 1 be an integer. We denote by ℓn
p the space C

n equipped with the

norm

x �→ ‖x‖ =
(

∑n

1
|xj |p

)1/p

.

Thus ℓn
p = ℓp(I ) for I = {1, . . . ,n}. When p = 2, the resulting space ℓn

2 is

the model for any n-dimensional Hilbert space.

When p = ∞, we set ‖x‖ = supj |xj |, the resulting space ℓn
∞ is the model

for any n-dimensional commutative C∗-algebra.

We denote by Mn (resp. Mn×m) the space of n × n (resp. n × m) matrices

with complex entries. More generally, for any vector space E we will denote

by Mn(E) (resp. Mn×m(E)) the space of n × n (resp. n × m) matrices with

entries in E. Thus Mn = Mn(C) (resp. Mn×m = Mn×m(C)).

A linear mapping u : X → Y between Banach spaces with ‖u‖ ≤ 1 is called

“contractive” or “a contraction.” We say that u : X → Y is a metric surjection

if u(X) = Y and the image of the open unit ball of X coincides with the open

unit ball of Y . Then passing to the quotient by ker(u) produces an isometric

isomorphism from X/ ker(u) to Y .

A mapping u : A → B between C∗-algebras is called a ∗-homomorphism

if it is a homomorphism of algebras such that u(x∗) = u(x)∗ for all x ∈ A.

When B = B(H) for some Hilbert space H the term “representation” is often

used instead of ∗-homomorphism.

Some abbreviations frequently used. c.b. for completely bounded, c.p.

for completely positive, u.c.p. for unital and completely positive, c.c. for

completely contractive.
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