
Cambridge University Press & Assessment
978-1-108-47898-4 — Algorithmic Randomness
Edited by Johanna N. Y. Franklin, Christopher P. Porter
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

KEY DEVELOPMENTS IN ALGORITHMIC RANDOMNESS

JOHANNA N. Y. FRANKLIN AND CHRISTOPHER P. PORTER

Contents

1. Introduction 1
1.1. Notation 3
1.2. Computability theory 3
1.3. Core mathematical concepts 9
2. Early developments 11
2.1. Randomness via initial segment complexity 12
2.2. Martin-Löf randomness 13
2.3. Schnorr’s contributions 15
3. Intermittent work: The late twentieth century 17
3.1. The contributions of Demuth and Kučera 17
3.2. The contributions of Kurtz, Kautz, and van Lambalgen 18
4. Rapid growth at the turn of the century 20
4.1. The Turing degrees of random sequences 20
4.2. Chaitin’s Ω 21
4.3. Randomness-theoretic reducibilities 22
4.4. Other randomness notions and lowness for randomness 24
4.5. Effective notions of dimension 31
5. Recent developments 33
6. Acknowledgments 34

§1. Introduction. The goal of this introductory survey is to present themajor
developments of algorithmic randomness with an eye toward its historical
development. While two highly comprehensive books [26, 81] and one thorough
survey article [21] have been written on the subject, our goal is to provide an
introduction to algorithmic randomness that will be both useful for newcomers
who want to develop a sense of the field quickly and interesting for researchers
already in the field whowould like to see these results presented in chronological
order.

Algorithmic Randomness: Progress and Prospects

Edited by Johanna N. Y. Franklin and Christopher P. Porter
Lecture Notes in Logic, 50
c� 2020, Association for Symbolic Logic 1

www.cambridge.org/9781108478984
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-47898-4 — Algorithmic Randomness
Edited by Johanna N. Y. Franklin, Christopher P. Porter
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

2 JOHANNA N. Y. FRANKLIN AND CHRISTOPHER P. PORTER

We begin in this section with a brief introduction to computability theory
as well as the underlying mathematical concepts that we will later draw upon.
Once these basic ideas have been presented, we will selectively survey four
broad periods in which the primary developments in algorithmic randomness
occurred: (1) the mid-1960s to mid-1970s, in which the main definitions of
algorithmic randomness were laid out and the basic properties of random
sequences were established, (2) the 1980s through the 1990s, which featured
intermittent and important work from a handful of researchers, (3) the 2000s,
during which there was an explosion of results as the discipline matured into a
full-fledged subbranch of computability theory, and (4) the early 2010s, which
we briefly discuss as a lead-in to the remaining surveys in this volume, which
cover in detail many of the exciting developments in this later period.

We do not intend this to be a full reconstruction of the history of algorithmic
randomness, nor are we claiming that the only significant developments in
algorithmic randomness are the ones recounted here. Instead, we aim to
provide readers with sufficient context for appreciating the more recent work
that is described in the surveys in this volume. Moreover, we highlight those
concepts and results that will be useful for our readers to be aware of as they
read the later chapters.
Before we proceed with the technical material, we briefly comment upon

several broader conceptual questions which may occur to the newcomer upon
reading this survey: What is a definition of algorithmic randomness intended
to capture? What is the aim of studying the properties of the various types of
randomness? And why are there so many definitions of randomness to begin
with? It is certainly beyond the scope of this survey to answer these questions
in any detail. Here we note first that more recent motivations for defining
randomness and studying the properties of the resulting definitions have
become unmoored from the original motivation that led to early definitions of
randomness, namely, providing a foundation for probability theory (see, for
example, [85]).
This original motivation led to the desire for a definition of a random

sequence satisfying the standard statistical properties of almost every sequence
(such as the strong law of large numbers and the law of the iterated logarithm).
Martin-Löf’s definition was the first to satisfy this constraint. Moreover, this
definition proved to be robust, as it was shown to be equivalent to defini-
tions of randomness with a significantly different informal motivation: while
Martin-Löf’s definition was motivated by the idea that random sequences are
statistically typical, later characterizations were given in terms of incompress-
ibility and unpredictability.

With such a robust definition of randomness, one can inquire into just how
stable it is: if wemodify a given technical aspect of the definition, is the resulting
notion equivalent to Martin-Löf randomness? As we will see below, the answer
is often negative. As there are a number of such modifications, we now have

www.cambridge.org/9781108478984
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-47898-4 — Algorithmic Randomness
Edited by Johanna N. Y. Franklin, Christopher P. Porter
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

KEY DEVELOPMENTS IN ALGORITHMIC RANDOMNESS 3

a number of nonequivalent definitions of randomness. Understanding the
relationships between these notions of randomness, as well as the properties of
the sequences that satisfy them, is certainly an important endeavor.
One might legitimately express the concern that such work amounts to

simply concocting new definitions of randomness and exploring their features.
However, not every new variant of every notion of randomness has proven
to be significant. Typically, attention is given to definitions of randomness
that have multiple equivalent formalizations, or which interact nicely with
computability-theoretic notions, or which provide insight into some broader
phenomenon such as the analysis of almost sure properties that hold in classical
mathematics. Many such developments are outlined in the surveys in this
volume.

1.1. Notation. Our notation will primarily follow [26] to make it easier to
cross-reference these results. The set of natural numbers will be denoted by �,
and we will usually name elements of this set using lowercase Latin letters such
asm and n. Subsets of � will be denoted by capital Latin letters such as A and
B . Without loss of generality, we may associate an element of 2� (that is, an
infinite binary sequence) with the subset of � consisting of the places at which
the infinite binary sequence is equal to 1. Finite binary strings, or elements of
2<� , will be denoted by lowercase Greek letters such as � and �.

We will often wish to discuss the subset of 2� whose elements all begin with
the same prefix �; we will denote this by [�]. We will further extend this to an
arbitrary subset S of 2<� :

[S] = {A * 2� | � � A for some � * S}.

The first n bits of a binary sequence X of length at least n, be it infinite or
finite, will be denoted by X�n, and the length of a finite binary string � will
be denoted by |�|. The concatenation of two binary strings � and � will be
denoted by ��.

1.2. Computability theory. This section is intended for researchers in other
areas of mathematics who are encountering computability theory for the first
time and require an introduction to the underlying concepts; others may safely
skip it. While each of Chapter 2 of [26] and Chapter 1 of [81] contains all the
fundamental concepts of computability theory that will be required for this
volume in more detail, researchers who wish to acquire a deeper understanding
of the subject are urged to consult Cooper [18], Odifreddi [83, 84], or Soare
[91].
Computability theory allows us to think about mathematical functions in

an effective context. While there are several ways to formalize the notions
we are about to describe, including Turing machines, register machines, the
�-calculus, and �-recursive functions, we will not fix such a formalization and
will instead encourage the reader to think of the concepts we describe below in

www.cambridge.org/9781108478984
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-47898-4 — Algorithmic Randomness
Edited by Johanna N. Y. Franklin, Christopher P. Porter
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

4 JOHANNA N. Y. FRANKLIN AND CHRISTOPHER P. PORTER

terms of the calculations that a computer with potentially unlimited memory
is capable of carrying out in a finite but unbounded amount of time.
The most fundamental concept is that of a partial computable function ×,

which can be thought of as an idealized computer program that accepts natural
numbers as inputs and outputs natural numbers as well. We note that when
a computer program is given an input (and thus when a partial computable
function is), it may either return an answer at some finite point, or stage, or
never halt. If a partial computable function halts on every natural number
(that is, it is actually a total function), we simply call it a computable function.

We now provide some necessary notation. If × halts on input n, we write
×(n)³; if it does not, we write ×(n)±. Furthermore, if × halts on input n
and gives the output m within s stages, we write ×(n)[s] = m to indicate the
number of stages as well as the output.

At this point, wemake three observations. The first is that there are countably
many partial computable functions: each partial computable function is
associated with a computer program, and we can note that a computer
program is a finite sequence of characters from a finite alphabet and that
there are thus countably many such objects. The second is that we can list the
partial computable functions in a computable way simply by generating a list
of all of the “grammatically correct” programs and that thus we can speak
about, for instance, the kth partial computable function ×k . While there are
still only countably many (total) computable functions and thus we can list
them as well, it can be shown that we cannot list them in a computable way
because no computer program is capable of identifying precisely the partial
computable functions that halt on every natural number. The third is that there
are computable bijections between the natural numbers and the sets of finite
binary strings and the rational numbers, so we may discuss partial computable
functions from or to these sets without loss of generality.

Now we can define special kinds of subsets of �. A computably enumerable

(c.e.) set is one that is the range of a partial computable function, so we will
often writeWe for the set that is the range of the e

th partial computable function
×e . We may think of ×e as enumeratingWe as follows: we first spend one step
trying to compute ×e(0), then two steps trying to calculate each of ×e(0) and
×e(1), then three steps trying to calculate each of ×e(0), ×e(1), and ×e(2), and
so on.1 If the calculation of ×e(n) ever halts, we will eventually discover this
through this dovetailing of computations, and when we do, we will enumerate
its value into our set We . Now we can use this idea of set enumeration to
formalize the concept of approximations to a set: for any c.e. setWe , we say that

1Each of these steps may be said to make up a single stage of the computation mentioned above.
These steps will be defined differently based on our formalization of computability theory: they
may be the number of states a Turing machine has been in or the number of reduction rules applied
in the �-calculus, but, at a less formal level, we may think of “spending n steps” as “running the
computer program for n seconds.”

www.cambridge.org/9781108478984
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-47898-4 — Algorithmic Randomness
Edited by Johanna N. Y. Franklin, Christopher P. Porter
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

KEY DEVELOPMENTS IN ALGORITHMIC RANDOMNESS 5

the approximation to it at stage s isWe[s] = {n | (#k f s)[n = ×e(k)[s]]}.
This gives us a sequence of approximations that converge to our c.e. set; in
fact, we can writeWe =

⋃

s*�We [s]. We quickly observe that there are several
equivalent definitions of a c.e. set; the other one that will be especially useful
to us is that of a c.e. set as one that is the domain of a partial computable
function.
A set that is itself c.e. and has a c.e. complement is called a computable set.

Just as a computable function halts on every input n, we can get an answer to
“Is n in A?” for a computable set A for every n: to see this, we observe that if
A =We and A =Wi , then we can determine whether n * A by enumerating
We andWi as described above; n must be in one of them, and we simply note
which. These two procedures can again be dovetailed and performed by a
single function that will give us the characteristic function of A:

�A(n) =

{

1 n * A,

0 n �* A.

We can therefore show that the characteristic function of a computable set will
be a computable function. Once again, there are countably many c.e. sets and
countably many computable sets.
Often, when we discuss randomness, we will talk about a sequence of

uniformly c.e. sets. Instead of simply requiring that each sequence in the set
be c.e., we require that there be a single computable function that generates
the entire sequence: �Ai�i*� is uniformly c.e. if there is a computable function
f such that Ai is the range of the f(i)

th partial computable function. Later,
we will generalize this concept to other classes of sets that have some natural
indexing: given such a class of sets C, we can say that that we have a sequence
of uniformly C sets �Ai�i*� if there is a computable function f such that f(i)
gives the index of the i th set in the sequence.
The final topic we must consider in order to understand the concepts

in algorithmic randomness we will discuss in this survey is that of oracle
computation, or relativization. This requires us to consider Turing functionals,
usually denoted by capital Greek letters such as Φ, which require not only a
natural number n as input but a sequence X that serves as an oracle. These
functionals can make use of the standard computational methods of partial
computable functions and receive answers to finitely many queries of the sort
“Is k inX ?” for use in their computation, and they can be indexed as Φ0,Φ1, . . .

just as the partial computable functions can be indexed as ×0, ×1, When
we use the sequence X as an oracle for the Turing functional Φ, we write ΦX .
Finally, we note that our notation for stages of computations using Turing
functionals carries over directly from that for stages of computations using
partial computable functions: we write ΦXe (n)[s] just as we would have written
×e(n)[s].

www.cambridge.org/9781108478984
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-47898-4 — Algorithmic Randomness
Edited by Johanna N. Y. Franklin, Christopher P. Porter
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

6 JOHANNA N. Y. FRANKLIN AND CHRISTOPHER P. PORTER

We say that A is computable from, or Turing reducible to B (A fT B) if
there is some Turing functional that, given B as an oracle, can compute the
characteristic function of A. We then use this reducibility to form equivalence
classes of sets that we call the Turing degrees: A and B have the same Turing
degree if A fT B and B fT A. This allows us to talk about properties related
to a set’s computational strength and not its particular members (for instance,
we can talk about 0, the Turing degree of the computable sets, rather than
“the Turing degree of the empty set”). The Turing degrees will be denoted by
boldface lowercase Latin letters such as d.
We will also use relativization to define new sets and Turing degrees. For

instance, for each set A, we define A� to be {n | ΦAn (n)³} and call it the jump of
A. The jump of the empty set, '�, is therefore the set of all natural numbers n
such that {n | Φ'

n(n)³}, or, in other words, the indices of those Turing functions
that halt given their own index as input and no additional information. Its
Turing degree, 0�, is the degree of the famous Halting Problem (see Chapter
II.2 of [83]). Since A <T A

� for any set A, we can develop an infinite ascending
chain 0 <T 0

� <T 0
�� <T . . . of Turing degrees. We note quickly that in

general, the nth jump of A is written as A(n).
Other, stronger reducibilities and their corresponding degree structures have

also been found to be useful in the study of randomness. Turing reductions
are not required to converge on any input and, when they do converge, the size
of the elements of the oracle queried during the computation is not necessarily
bounded by any reasonable function. The next type of reducibility is weak
truth-table reducibility, or wtt-reducibility. A wtt-reduction ΦA is a Turing
reduction in which the computation of ΦA(n), should it halt, is carried out
by querying only the first f(n) bits of A for a given computable function f.
Finally, the last such reducibility we will discuss in this survey is truth-table
reducibility, or tt-reducibility: a tt-reduction ΦA is one that will converge at
every input given any oracle A.2 It can be seen that

A ftt B =ó A fwtt B =ó A fT B

but that none of these implications reverse.
As with Turing reducibility, we can also create equivalence classes ofmutually
wtt- or tt-computable sets and study the wtt- and tt-degrees. We can then ask
about the properties of all of these structures – the Turing degrees, for instance,
form an upper semilattice – or types of substructures within these structures,
such as ideals, which are subsets that are both downward closed and closed
under join, or an interval between two degrees (for instance, the interval [0, 0�]
in the Turing degrees). We can also discuss relationships between individual

2While this was not the original definition of a tt-reduction, it is perhaps the most intuitive. The
original definition of a tt-reduction explains its name and can be found in Chapter III.3 of [83].

www.cambridge.org/9781108478984
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-47898-4 — Algorithmic Randomness
Edited by Johanna N. Y. Franklin, Christopher P. Porter
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

KEY DEVELOPMENTS IN ALGORITHMIC RANDOMNESS 7

degrees; for example, we say that two degrees c and d form a minimal pair in
their degree structure if the only degree they both compute is 0.
It is often useful to characterize a subset of � in terms of the number of

unbounded quantifiers required to define it. A Σn set A has a membership
relation that can be defined from a computable relation R(x1, x2, . . . , xn, y)
using n alternating quantifiers, starting with an existential one: y * A if and
only if

#x1"x2#x3 . . . Qnxn(R(x1, x2, . . . , xn, y)).

Qn will be an existential quantifier if n is odd and a universal quantifier if
n is even. We observe that we can consider these quantifiers to be strictly
alternating. For instance, if we had the membership relation

#x1#x2(R(x1, x2, y)),

we could use a computable pairing function p : �2 ³ � and express the same
relation as

#x#x1 f x#x2 f x(x = p(x1, x2) 'R(x1, x2, y))

instead; note that the second and third existential quantifiers in this formula
are bounded and therefore that

#x1 f x#x2 f x(x = p(x1, x2) 'R(x1, x2, y))

is a computable relation.

Example 1.1. '� is Σ1: e * '� if and only if

#s(Φ'
e (e)[s]³).

Example 1.2. The set of all e such thatWe is finite, Fin, is Σ2: e belongs to
Fin if and only if

#m"s"k(k > m ³ k �*We[s]).

AΠn set is defined in a similar way. It will also have n alternating quantifiers,
but this time starting with a universal quantifier; we note that the complement
of a Σn set is a Πn set and vice versa.

Example 1.3. The set of all e such that ×e is total, Tot, is Π2: e belongs to
Tot if and only if

"k#s#m(×e(k)[s] = m).

Finally, we have the ∆n sets, which we define to be those sets that can be
characterized in both a Σn and a Πn way. Since we often refer to the class of Σn
sets simply as Σn (and similarly for the classes of Πn and ∆n sets), we can write

∆n = Σn +Πn.

These classes of sets – the Σn, Πn, and ∆n sets – form the arithmetic hierarchy.
We will note some fundamental facts relating these classes to the classes of sets
we have already discussed (see Chapter IV.1 of [83]):

www.cambridge.org/9781108478984
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-47898-4 — Algorithmic Randomness
Edited by Johanna N. Y. Franklin, Christopher P. Porter
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

8 JOHANNA N. Y. FRANKLIN AND CHRISTOPHER P. PORTER

1. Σ0 = Π0 = ∆0 = ∆1 is simply the class of computable sets.
2. A set is Σ1 if and only if it is c.e.
3. A set is ∆n exactly when it is Turing computable from '(n21).

Furthermore, this hierarchy is proper: as long as n > 0, we will always have
∆n " Σn and ∆n " Πn.

Wemay describe subsets of natural numbers in ways other than the arithmetic
hierarchy, too. For instance, we have the high and low sets, which are defined
based on the usefulness of the sets in question as oracles:

" a low set A ¦ � is one such that A� cT 0�, and
" a high set A ¦ � is one such that A� gT 0��.

It is often more useful to define high sets in terms of the domination property
discovered by Martin [65]: A set is high if and only if it Turing computes
a function f that dominates all computable functions (that is, for each
computable g, we have f(n) g g(n) for all sufficiently large n).
Similarly, we may consider highness and lowness in the context of tt-

reducibility: a set A is superhigh if A� gtt 0
�� and superlow if A� ctt 0

�.
Another hierarchy of classes of sets that has proven useful is the genericity

hierarchy, which we can compare to a hierarchy of randomness notions that
we will see later. Instead of classifying sets based directly on the complexity of
their definitions, we classify them in terms of the complexity of the sets they
are forced to either meet or avoid.

Definition 1.4. Let S be a set of finite binary strings. We say that an infinite
binary sequence A meets S if there is some � * S that is an initial segment of
A. Furthermore, we say that A avoids S if there is some initial segment of A
that is not extended by any element of S.

This gives us the framework necessary to define generic sets once we have
also defined a dense set of strings: a set of strings S is dense if for every � * 2<� ,
there is a � * S that extends it.

Definition 1.5. A sequence A is n-generic if it either meets or avoids every
Σn set and weakly n-generic if it meets every dense Σn set.

These classes of sequences once again form a proper hierarchy: every n
generic is weakly n-generic, and every weakly (n + 1)-generic is n-generic.

Other classes of sets whose definitions are less closely tied to the arithmetical
hierarchy have also been shown to be useful. For instance, we will make use
of the sets of hyperimmune degree, which are defined, once again, using a
domination property [77]: a set A has hyperimmune degree if it computes a
function that is not dominated by any computable function. The sets that do
not have hyperimmune degree are said to be of hyperimmune-free degree; it is
worth noting that there are continuum many such sets and that all of them
(except the computable sets) are Turing incomparable to '�.

www.cambridge.org/9781108478984
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-47898-4 — Algorithmic Randomness
Edited by Johanna N. Y. Franklin, Christopher P. Porter
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

KEY DEVELOPMENTS IN ALGORITHMIC RANDOMNESS 9

1.3. Core mathematical concepts. Several concepts from classical mathe-
matics will prove useful; we summarize them here. First we will recall some
fundamental facts about the Cantor space, 2� , as a topological space and as a
probability space.
In the Cantor space, our basic open sets have the form [�] for � * 2<�: as

previously mentioned, [�] is the set of elements of 2� that extend �. In fact,
these sets are all clopen, and the clopen sets are the finite unions of these [�]’s.
Now that we have done this, we can describe the complexity of the open sets
that we generate in this way in terms of their generating sets. For instance,
we can say that [S] is effectively open if S is c.e., and more generally, we can
define the effective Borel hierarchy as we defined the arithmetic hierarchy in
the previous subsection: [S] is Σ0

1 if it is the union of a c.e. sequence of basic
open sets, Π0

1 if it is the complement of a Σ0
1 set, Σ

0
n for n > 1 if it is the union

of a sequence of uniformly Π0
n21 sets (that is, a computable sequence of Π0

n21

classes), and so on. It is worth noting at this point that it is customary to refer
to a subset of the Cantor space, especially one defined using this hierarchy, as
a class.
We can also establish the Lebesgue measure on the Cantor space: the

measure of a basic open set [�] is �([�]) = 22|�|, and the measure of any other
measurable set is determined in the standard way.
We will often identify the Cantor space with the unit interval (0,1) since

these spaces are measure-theoretically isomorphic. Here, we make use of the
interval topology on R, and our basic open sets are intervals (a, b). We will
establish the Lebesgue measure in this context as well, denoted throughout by
� once again [57]. This is the “standard” measure on R, and the Lebesgue
measure of such an interval is �((a, b)) = b 2 a for finite a and b.

We can also describe elements ofR using concepts from classical computabil-
ity theory. In general, we identify a real ³ in the unit interval with the element
A of the Cantor space such that ³ = 0.A.3 This allows us to say that such a
real is computable if the corresponding A * 2� is; it is equivalent to say that
a real ³ is computable if there is a computable sequence of rationals �qi�i*�
converging to it such that |qn 2 ³| < 22n for every n [99, 100].

Of course, we would like to extend this to computable enumerability as well:
just as a c.e. set is one which we build up from ' by enumerating elements into
it, a left-c.e. real ³ is one that is effectively approximable from below; that is,
there is a computable, increasing sequence of rationals that converges to ³.
Correspondingly, a right-c.e. real is one that is effectively approximable from
above. Equivalently, we could define these in terms of Dedekind cuts: a real ³

3While some reals may have two representations, this does not matter: such a real will be
rational and therefore the corresponding possibilities for A are both computable and have the
same computational strength.

www.cambridge.org/9781108478984
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-47898-4 — Algorithmic Randomness
Edited by Johanna N. Y. Franklin, Christopher P. Porter
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

10 JOHANNA N. Y. FRANKLIN AND CHRISTOPHER P. PORTER

is left-c.e. if and only if its left cut {q * Q | q < ³} is a c.e. set and right-c.e. if
its right cut (defined similarly) is a c.e. set.

We can extend the notions of computability and computable enumerability
once more, this time to functions from � or another computable set to R. To
do so, we need to be able to talk about a sequence of reals that is uniformly
computable or left-c.e. These definitions are built directly from those of
uniformly computable and uniformly c.e. sets:

Definition 1.6. A uniformly computable (left-c.e.) sequence of reals is a
sequence �ri�i*� such that there is a computable function f : �2 ³ Q such
that for a given i , �f(i, n)�n*� is a computable (left-c.e.) approximation for ri .

Definition 1.7. A function from a computable set to R is computable if its
values are uniformly computable reals, and it is computably enumerable if its
values are uniformly left-c.e. reals.

Now we turn our attention to the general mathematical ideas we will need
to study randomness properly and place them in the context of computability
theory. The first concept, that of a martingale, will be useful when we discuss
the predictability framework for randomness. In general, a martingale is a
certain type of stochastic process, but here we need only think of it as a type of
betting strategy on finite binary strings.

Definition 1.8 ([59]). A function d : 2<� ³ Rg0 is a martingale if it obeys
the fairness condition

d (�) =
d (�0) + d (�1)

2

for all � * 2<� . We say that a martingale d succeeds on A * 2� if

lim sup
n
d (A�n) = >,

and the success set of d , which we will write as S[d], is the set of all sequences
upon which d succeeds.

We can think of d (�) as expressing the amount of capital that we have after
betting on the initial string � using the strategy inherent in d (so d (��) is our
capital before any bets are placed) and S[d] as the set of sequences that we can
make arbitrarily much money betting on if the payout is determined by d . As
shown by Ville, P ¦ 2� has Lebesgue measure zero if and only if there is some
martingale d such that P ¦ S[d] [102].
A computable or c.e. martingale is simply a martingale that is, respectively,

a computable or c.e. function.
To define the last of the coremathematical concepts in this section, Hausdorff

dimension, we must consider a variation of Lebesgue measure on the Cantor
space.

www.cambridge.org/9781108478984
www.cambridge.org

