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tion to the fundamental results and methods of the subject from the syntactic point
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Preface

In the phrase mathematical logic, the word “mathematical” is ambiguous. It can be taken to

specify the methods used, so that the phrase refers to the mathematical study of the principles

of reasoning. It can be taken to demarcate the type of reasoning considered, so that the phrase

refers to the study of specifically mathematical reasoning. Or it can be taken to indicate the

purpose, so that the phrase refers to the study of logic with an eye toward mathematical

applications.

In the title of this book, the word “mathematical” is intended in the first two senses but

not in the third. In other words, mathematical logic is viewed here as a mathematical study

of the methods of mathematical reasoning. The subject is interesting in its own right, and it

has mathematical applications. But it also has applications in computer science, for example,

to the verification of hardware and software and to the mechanization of mathematical rea-

soning. It can inform the philosophy of mathematics as well, by providing idealized models

of what it means to do mathematics.

One thing that distinguishes logic as a discipline is its focus on language. The subject

starts with formal expressions that are supposed to model the informal language we use to

define objects, state claims, and prove them. At that point, two distinct perspectives emerge.

From a semantic perspective, the formal expressions are used to say things about abstract

mathematical objects and structures. They can be used to characterize classes of structures

like groups, rings, and fields; to characterize particular structures, like the Euclidean plane or

the real numbers; or to describe relationships within a particular structure. From that point

of view, mathematical logic is the science of reference, definability, and truth, clarifying

the semantic notions that determine the relationship between mathematical language and the

mathematical structures it describes.

This book adopts a more syntactic perspective, in which the primary objects of interest are

the expressions themselves. From that point of view, formal languages are used to reason

and calculate, and what we care about are the rules that govern their proper use. We will

use formal systems to understand patterns of mathematical inference and the structure of

mathematical definitions and proofs, and we will be interested in the things that we can do

with these syntactic representations. We won’t shy away from the use of semantic methods,

but our goal is to use semantics to illuminate syntax rather than the other way around.

There are a number of reasons why a syntactic approach is valuable. The mathematical

theory of syntax is independently interesting and informative. A focus on syntactic objects

is also more closely aligned with computer science, since these objects can be represented as

data and acted on by algorithms. Finally, there are philosophical benefits. Because a general

theory of finite strings of symbols is all that is needed to work with expressions, a syntactic

perspective provides a means of studying mathematical reasoning – including the use of

ix
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x Preface

infinitary objects and methods – without importing strong mathematical presuppositions at

the outset.

Another notable feature of this book is its focus on computation. On the one hand, we

expect mathematics to give us a broad conceptual understanding. At the empirical borders

of the subject, this serves to organize and explain our scientific observations, but our desire

for understanding is not limited to empirical phenomena. On the other hand, we also expect

mathematics to tell us how to calculate trajectories and probabilities so that we can make bet-

ter predictions and decisions, and act rationally toward securing our pragmatic goals. There

is a tension between conceptual understanding and calculation: computation is important,

but we often see further, and reason more efficiently, by suppressing computational detail.

The tension is partially captured by the logician’s distinction between classical logic, on

the one hand, and intuitionistic or constructive logic, on the other. Classical logic is meant to

support a style of reasoning that supports abstraction and idealization, whereas intuitionistic

logic is more directly suited to computational interpretation. Mathematics today is resolutely

classical, but mathematics without calculation is almost a contradiction in terms. And while

the end goal of computer science is practical computation, abstraction is essential to de-

signing and reasoning about computational systems. Here we will study both classical and

constructive logic, with an eye toward understanding the relationships between the two.

The connections between logic and computation run deep: we can compute with formal

expressions, we can reason formally about computation, and we can extract computational

content from formal derivations. The style of presentation I have adopted here runs the risk

of being judged too mathematical by computer scientists and too computationally minded

for pure mathematicians, but I have aimed to strike a balance and, hopefully, bring the two

communities closer together.

Audience The material here should be accessible at an advanced undergraduate or introduc-

tory graduate level. I have tried to keep the presentation self-contained, but the emphasis

is on proving things about logical systems rather than illustrating and motivating their use.

Readers who have had a prior introduction to logic will be able to navigate the material here

more quickly and comfortably.

Notation Most of the notation in this book is conventional, but challenges inevitably arise

when juxtaposing material from fields where conventions differ. The most striking instance

of such a challenge is the use of binders like quantifiers and lambda abstraction: mathe-

matical logicians generally take such operations to bind tightly, while computer scientists

typically give them the widest scope possible. Another mismatch arises with respect to func-

tion application, since theoretical computer scientists often write f x instead of f (x). So,

where a mathematical logician would write

#x A(x) ³ #x (A(x) ' "y (R(y, x) ³ ¬A(y))),

a computer scientist might write

(#x. A x) ³ #x. A x ' "y. R y x ³ ¬A y.

As a compromise, this book uses the mathematician’s notation for symbolic logic but adopts

the computer scientist’s conventions for computational systems like the simply typed lambda
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Preface xi

calculus. The differences are most pronounced in Chapters 14 and 17, where logic and type

theory come together.

Teaching The material in this book can be used to teach a number of different courses, and

the dependencies between topics are mild. Chapters 1–7 provide a thorough introduction to

the syntax and semantics of first-order logic. Classically minded mathematicians can easily

tune out anything to do with intuitionistic logic, while computer scientists and other inter-

ested parties can spend more time with it. Ignoring intuitionistic logic might leave time for

the cut elimination theorem and its applications, while skipping cut elimination might leave

time to dabble in algebraic semantics.

For students already familiar with propositional and first-order logic, Chapters 8–14 pro-

vide a fairly self-contained presentation of formal arithmetic, computability, and the incom-

pleteness theorems. A course on computability and incompleteness can start with Chapter 8,

skip Section 8.5, continue to Chapter 11, refer back to Sections 10.2 and 10.5 for background

on arithmetic definability, skip Sections 11.8 and 11.9, and then move on to Chapter 12.

A course on proof theory can focus on the cut elimination theorem and its applications

(Chapters 6 and 7) and the simply typed lambda calculus (Chapter 13). Chapter 14 can

serve as the focus of a course on computational interpretations of arithmetic, building on

material in Chapters 8–11 and 13; for that purpose, Sections 8.5, 9.5, 10.6–10.7, and 11.6–

11.9 can be omitted. Similarly, Chapter 16 can serve as the focus for an introduction to

subsystems of second-order arithmetic and reverse mathematics, supported by a quick tour

of Chapters 8–11 and Sections 15.4 and 15.5. Sections 11.8 and 11.9, in particular, were

written with Chapter 16 in mind.

Most of the material after Chapter 7 is not strongly tied to any particular deductive sys-

tem. Natural deduction is sometimes used by default, but that choice is not essential to the

exposition.
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