
Cambridge University Press & Assessment
978-1-108-47875-5 — Mathematical Logic and Computation
Jeremy Avigad
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1

Fundamentals

Every branch of mathematics has its subject matter, and one of the distinguishing features of

logic is that so many of its fundamental objects of study are rooted in language. The subject

deals with terms, expressions, formulas, theorems, and proofs. When we speak about these

notions informally, we are talking about things that can be written down and communicated

with symbols. One of the goals of mathematical logic is to introduce formal definitions that

capture our intuitions about such objects and enable us to reason about them precisely.

At the most basic level, syntactic objects can be viewed as strings of symbols. For con-

creteness, we can identify symbols with particular set-theoretic objects, but, for most pur-

poses, it does not matter what they are; all that is needed is that they are distinct from one

another. A set of symbols is called an alphabet, and a string of symbols from the alphabet

A is just a finite sequence of elements of A. Notions like the length of a string s and the

concatenation s�t of two strings s and t are carried over from sequences. If a0, . . . , ak21 are

symbols in some alphabet, ‘a0 . . . ak21’ should be interpreted as the sequence (a0, . . . , ak21).

These representations give much of logic a finitary, combinatorial, and computational flavor.

Nonetheless, abstraction can be helpful. What is essential about expressions like

((x + 7) · (y + 9)) is that they are built up from simple expressions – in this case, variables

and numerical constants – using fixed operations in a systematic way. We ought to be able to

prove things about such expressions inductively, and define operations on such expressions

recursively, without descending to the level of symbols and strings. Functional programming

languages often support recursive definitions on such inductively defined types.

The goal of this chapter is to develop a foundation for reasoning about syntax. While the

definitions and theorems here underwrite many of the fundamental patterns of reasoning and

inference in this book, most of those patterns are intuitively clear and natural when taken at

face value. As a result, it would be reasonable to skim this chapter and refer back to it as

necessary.

In logic, we state things about formal statements and prove things about formal proofs.

This apparent circularity is sometimes confusing to novices. Philosophers and logicians often

distinguish a language under study from the metalanguage used to study it, and a formal

axiomatic theory from the metatheory that embodies the methods that are used to reason

about it. Here our metatheory is simply everyday mathematics, as it is found in ordinary

textbooks in algebra, analysis, or number theory. It is the subject matter, not the principles

of reasoning, that sets mathematical logic apart.

1

www.cambridge.org/9781108478755
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-47875-5 — Mathematical Logic and Computation
Jeremy Avigad
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

2 Fundamentals

1.1 Languages and Structures

Mathematics deals with structures. A group consists of a set of elements G together with a

distinguished element 1 of G, a binary operation · on G, and an inverse function x �³ x21

from G to G, such that these data satisfy the group axioms. A field consists of a larger set

of data, satisfying a different set of axioms. A partial order on a set A consists of a binary

relation f on A that is reflexive, antisymmetric, and transitive. An equivalence relation on

a set A is a binary relation c on A that is reflexive, symmetric, and transitive.

Each of these can be viewed as a structure satisfying some axioms. We will later determine

what sort of thing an axiom is and what it means to satisfy one. But first, we need to say what

a structure is. In the examples above, each particular structure provides an interpretation of

a certain set of symbols, such as {1, ·, ·21} or {c}, that are intended to denote functions or

relations. Such a specification is known as a language.

Definition 1.1.1. A language is a triple (�, �, a), where � and � are disjoint sets of sym-

bols and a is a function from � * � to N. � is said to be the set of function symbols of the

language, � is the set of relation symbols, and a assigns to each function and relation symbol

its arity. If f is an element of � and a( f ) = k, then f is said to be a k-ary function symbol.

If R is an element of � and a(R) = k, then R is said to be a k-ary relation symbol.

Intuitively, a function is something that returns a value, whereas a relation is something

that may or may not hold of its arguments. We can think of a 0-ary function as a con-

stant value, that is, a function that returns a value without taking any arguments. Similarly,

we can think of a 0-ary relation as a constant truth value. In the examples above, the lan-

guage of groups has a 0-ary function symbol, 1, a binary function symbol, ·, and a unary

function symbol, ·21. The language of equivalence relations has a single binary relation

symbol, c.

The word “language” is misleading since a language is really a specification of a basic vo-

cabulary from which complex expressions can be built. Later on, we will also consider other

kinds of specifications. The present notion is also called a signature, and sometimes a first-

order language to distinguish it from other kinds of languages. First-order languages can be

used to reason about algebraic structures like groups and fields; to reason about particular

structures like the natural numbers and the real numbers; or to give foundational accounts of

the entire universe of mathematical objects.

Definition 1.1.2. If L = (�, �, a) is a language, a structure for L (or an L-structure) consists

of a set U and a function I that assigns to each k-ary function symbol in � a k-ary function

from U to U and to each k-ary relation symbol in � a k-ary relation on U .

An L-structure is also often called a model for L, or simply a model when the language

is understood. If A= (U, I) is an L-structure, we typically write |A| for the set U , called

the universe of A, f A instead of I( f ) for the interpretation of the function symbol f in A,

and RA instead of I(R) for the interpretation of the relation symbol R. For example, if L is

a language with one 0-ary function symbol c (i.e. a constant symbol), two binary function

symbols f and g, and one binary relation symbol R, then we can interpret L in the structure

with universe N, the constant 0, functions + and ·, and relation f. For convenience, we will

typically refer to this as the structure (N, 0, +, ·, f), leaving the correspondence with the

symbols c, f , g, and R to be inferred from context.

www.cambridge.org/9781108478755
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-47875-5 — Mathematical Logic and Computation
Jeremy Avigad
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.1 Languages and Structures 3

If G and H are groups, a homomorphism × : G ³ H is a function that maps 1G to 1H and

respects multiplication and inverses. Saying that × respects multiplication means that ×(g1 ·G

g2) = ×(g1) ·H ×(g2) holds for every g1 and g2 in G, and saying that it respects inverses

means that ×(g21) = ×(g)21 holds for every g in G, where the first inverse is computed in

G and the second one is computed in H . (By the usual abuse of notation, we have written

G for both the group structure and the underlying carrier set, |G|.) If c is an equivalence

relation on a set A and > is an equivalence relation on a set B, then a homomorphism from

(A, c) to (B, >) is a function × : A ³ B with the property that whenever a1 c a2, we have

×(a1) > ×(a2). Both of these are instances of a general notion.

Definition 1.1.3. Let L be a language and let A and B be L-structures. Then a homomor-

phism × from A to B is a function from |A| to |B| that satisfies the following two require-

ments:

" For every k-ary function symbol f of L and every tuple a0, . . . , ak21 of elements of |A|,

×( f A(a0, . . . , ak21)) = f B(×(a0), . . . , ×(ak21)).

" For every k-ary relation symbol R of L and every tuple a0, . . . , ak21 of elements of |A|, if

RA(a0, . . . , ak21), then RB(×(a0), . . . , ×(ak21)).

Notice that the implication in the second clause of the definition of a homomorphism does

not necessarily reverse: a homomorphism is required to preserve each of the relations in

the source structure but not reflect them. A homomorphism is called an embedding if it is

injective and satisfies the following strengthening of the second clause:

" For every k-ary relation symbol R of L and every tuple a0, . . . , ak21 of elements of |A|,

RA(a0, . . . , ak21) if and only if RB(×(a0), . . . , ×(ak21)).

In other words, an embedding both preserves and reflects the relations.

A homomorphism × : A³B is an isomorphism if there is a homomorphism Ë : B³A

such that Ë ç × is the identity on A and × ç Ë is the identity on B. Exercise 1.1.1 asks you

to show that × : A³B is an isomorphism if and only if it is a surjective embedding. Two

structures for a language L are said to be isomorphic if there is an isomorphism between

them. A homomorphism from a structure A to itself is called an endomorphism, and an

isomorphism from a structure A to itself is called an automorphism.

Think of a homomorphism × from A to B as a translation between the two structures.

The first clause says that applying a function in A to some elements in the universe of A and

then translating to B gives the same result as translating the elements to B and applying

the corresponding function in B. The second clause says that relations in A are preserved

by the translation. For example, ×(x) = 2x is an embedding of (Z, 0, +, f) in (Z, 0, +, f),

and Ë(x) = 0 is a homomorphism between those two structures. The identity function on

Z is an embedding of (Z, 0, 1, +, ·, f) in (R, 0, 1, +, ·, f), and the function h(x) = ex is

an isomorphism of (R, 0, +, f) and (R>0, 1, ·, f), where R
>0 denotes the positive real

numbers.

With the definitions above, saying that A is an L-structure means that we have chosen

specific symbols to represent the relevant data. Mathematically, groups are sometimes writ-

ten with multiplicative notation 1, ·, ·21, sometimes with additive notation 0, +, and 2, and

sometimes with neutral symbols, such as e, ·, and i. In the terminology introduced here, each

language gives rise to a different kind of a structure, say, multiplicative group structures,

www.cambridge.org/9781108478755
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-47875-5 — Mathematical Logic and Computation
Jeremy Avigad
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

4 Fundamentals

additive group structures, and general group structures. Whether or not this is a good thing

is subject to debate, but, in any case, any structure of one kind can be mapped to a structure

of one of another kind in such a way that the identity function on the underlying set will be

an isomorphism between them. There are other approaches to talking about languages and

structures; one is to take a signature to be a specification of arities without a choice of func-

tion symbols, and a structure for that signature to be an ordered sequence of interpretations.

The various approaches are generally intertranslatable.

In Chapter 5, we will make use of the notion of a quotient construction for structures.

Let A be a structure for a language L and > be an equivalence relation on |A|. Suppose

furthermore that all the functions and relations in A respect the congruence, as described

in Appendix A.2. We define A/> to be the structure with universe |A|/ >, where for every

k-ary function symbol f of L, f A/>([a0], . . . , [ak21]) is defined to be [ f A(a0, . . . , ak21)],

and for every k-ary relation symbol R of L, RA/>([a0], . . . , [ak21]) holds if and only if

RA(a0, . . . , ak21). The function ×(a) = [a] is then a surjective homomorphism from A to

A/>, and a > b holds of elements of |A| if and only if ×(a) = ×(b). Thus, the quotient

construction turns the equivalence relation > on A into equality on A/>.

Exercises

1.1.1. Show that a function × : A³B between two L-structures is an isomorphism if and only if it

is a surjective embedding.

1.1.2. Show that the composition of two homomorphisms is a homomorphism, and similarly for em-

beddings and isomorphisms.

1.1.3. Show that isomorphism is an equivalence relation.

1.1.4. For each of the following pairs, show that the two structures are isomorphic:

a. ((a, b), <) and ((c, d), <), where a, b, c, d *R, a < b, c < d, and (a, b) denotes the open

interval {x | a < x < b}

b. ((0, 2), 1, <) and (R, 0, <)

c. (R, 0, +, <) and (R>0, 1, ·, <), where R
>0 denotes the positive real numbers.

1.1.5. For each of the following pairs, show that the two structures are not isomorphic:

a. (N, <) and (N, >)

b. ((0, 1), <) and ((0, 1], <), where (0, 1] denotes the half-closed interval {x | 0 < x f 1}

c. ((0, 1) * (1, 2), <) and ((0, 2), <).

1.1.6. Determine all the endomorphisms and automorphisms of each of the following structures:

(N, <), (N, +), (R, +), (R, +, <), and (R, ·).

1.1.7. Verify the last claim in this section: if A is any structure and > is an equivalence relation on

|A|, then ×(a) = [a] is a surjective homomorphism from A to A/> that preserves the relations

in A, and for every a and b in |A|, a > b if and only if ×(a) = ×(b).

1.2 Inductively Defined Sets

The natural numbers can be characterized inductively as a set that contains a distinguished

element, 0, and is closed under an injective operation, succ(n), that returns the successor of n.

The inductive character amounts to the fact that the sequence 0, succ(0), succ(succ(0)), . . .

exhausts the set of natural numbers, in the following sense: if A ¦N contains 0 and is closed

www.cambridge.org/9781108478755
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-47875-5 — Mathematical Logic and Computation
Jeremy Avigad
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.2 Inductively Defined Sets 5

under succ, then A =N. If we associate any property P of natural numbers with the set of

numbers satisfying P, the preceding statement amounts to the principle of induction on N.

It is often useful to characterize sets of expressions in a similar fashion. We can view

arithmetic expressions like ((x + 7) · (y + 9)) as being built up from variables and numeric

constants by the syntactic operations of forming sums and products. The utility of such a

perspective is not limited to syntax, and we often come across sets and structures in mathe-

matics that are generated in such a way. For example, if G is a group and S is a subset of G,

the subgroup �S� generated by S is the smallest subset of G containing S and closed under

the group operations. Similarly, the collection of Borel subsets of R is the smallest collec-

tion of subsets of R containing the open sets and closed under the operations of forming

complements and countable unions.

In this section, we will develop a very general, abstract framework for describing sets

of elements that are defined inductively, from the bottom up. Our high-level approach is

somewhat heavy-handed, and we could certainly develop a theory of syntax in more concrete

terms. But as the examples below indicate, the approach has applications beyond defining

terms and expressions, and abstracting the common features provides a clear understanding

of the essential features of the constructions.

We start with a set U of objects, a universe, within which the construction takes place. A

rule on U is just a pair (S, a), where S is a subset of U and a is an element of U . We will

think of a set of rules as a recipe for constructing a set of objects, where the rule (S, a) says

“if the elements of S are in the set, then a must be in the set as well.” Our goal is to construct

a set that consists of only those elements that are required to be there by the rules. Notice

that if S is the empty set, then the rule (S, a) asserts outright that a must be in the set we

construct. Such rules are the starting point for the construction. If there are no such rules, the

empty set itself satisfies all the requirements.

Let R be a set of rules on U . Say that a set B is inductive with respect to R or closed

under R if it meets the specification above, that is, for each rule (S, a) *R, if S ¦ B, then

a * B. Let

A =
�

{B ¦ U | B is inductive}.

In words, A is the intersection of all inductive subsets of U , so an element a of U is in A if

and only if it is in every inductive subset of U . The next proposition shows that A is the set

we are after.

Proposition 1.2.1. The following hold:

1. A is inductive.

2. If B ¦ A is inductive, then B = A.

Proof For the first claim, suppose (S, a) *R and S ¦ A. By the definition of A, S ¦ B for

every inductive subset B of U . But if B is inductive and S ¦ B, then a is in B. So a is in every

inductive set as well, and so a * A.

For the second claim, if B ¦ U is inductive, then A ¦ B, since every element of A is in

every inductive set. Since we are assuming B ¦ A, we have B = A.

The first part of Proposition 1.2.1 says that A is closed under the rules, while the second

part of the proposition says that A is the smallest such set. In practice, the relevant set of

rules is often described with a list of conditions, as in the following example.

www.cambridge.org/9781108478755
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-47875-5 — Mathematical Logic and Computation
Jeremy Avigad
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

6 Fundamentals

Example. Let G be any group and S be any nonempty subset of G. Then the subgroup of G

generated by S is the smallest subset H of the carrier of G that satisfies the following:

" If g is any element of S, then g is in H .

" If g1 and g2 are in H , then so is g1g2.

" If g is in H , then so is g21.

To express this in formal terms, take the universe U to be the carrier of G and take R to be

the union of the following three sets:

" {(', g) | g * S}

" {({g1, g2}, g1g2) | g1, g2 * G}

" {({g}, g21) | g * G}.

Then H is the subset of G defined inductively by R.

Notice that there is a theorem implicit in our use of the phrase “the subgroup of G gen-

erated by S,” namely, that the inductively defined set is in fact a subgroup. This follows

easily from the closure under the rules. The inductive character implies that if K is any other

subgroup of G containing S, then H ¦ K.

I will leave it to you to carry out similar translations for the next three examples.

Example. The collection of Borel subsets of R is the smallest subset B of P(R) that satisfies

the following:

" If a, b are in R, then the open interval (a, b) is in B.

" If S is in B, so is S, the complement of S.

" If (Si)i*N is a countable sequence of subsets of R and each Si is in B, then so is
"

i Si.

Example. Let A be any set and R be any binary relation on A. Then the transitive closure

of R is the relation R" defined inductively as follows:

" For any a, b * A, if R(a, b), then R"(a, b).

" For any a, b, c * A, if R"(a, b) and R"(b, c), then R"(a, c).

The closure and inductive properties imply that R" is the smallest transitive relation on A

containing R.

Example 1.2.2. Let U be a collection of sets containing ' and closed under the function

succ(a) = a * {a}. (The set-theoretic axiom of infinity states precisely that there exists such

a set U .) Then, in set-theoretic terms, the set of natural numbers, N, can be defined as the

smallest set containing ' and closed under succ. Similarly, let U be a collection of sets

containing ' and closed under succ and countable unions. Then the smallest subset of U

with these properties is exactly the set of countable ordinals.

Example 1.2.3. More generally, suppose U is any set of objects and F is a set of functions

from U to U of various arities, including constants. Then we can define the set A to be the

smallest subset of U closed under all the elements of F. More precisely, A is the smallest

subset of U containing all the constants in F, and closed under all the functions. This set has

the following two properties:

" It contains all the constants in F and is closed under each of the functions.

" If B ¦ A has these properties, then B = A.

www.cambridge.org/9781108478755
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-47875-5 — Mathematical Logic and Computation
Jeremy Avigad
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.2 Inductively Defined Sets 7

Since this example will figure prominently in this book, I will describe the set of rules explic-

itly. For each k-ary function f * F and sequence a0, . . . , ak21, we add the rule

({a0, . . . , ak21}, f (a0, . . . , ak21)). Intuitively, this says that as soon as a0, . . . , ak21 are

included in the set, we should include f (a0, . . . , ak21) as well. Each constant c in F cor-

responds to the rule (', c).

The terminology commonly used to describe these constructions varies. In the general sit-

uation, we may say that A is the smallest set closed under the rules in R or the set inductively

generated by R. Similar language is used to describe the construction of Example 1.2.3. For

example, we have already described the natural numbers as the smallest set containing 0 and

closed under succ in Example 1.2.2, and we might also say that N is inductively generated

from {0} by succ.

The second claim of Proposition 1.2.1 is really an induction principle for A. It implies that

in order to show that every element of A has some property P, it suffices to show that for each

rule (S, a) in R, if S ¦ A and P holds of every element of S, then P holds of a. To see that this

principle follows from Proposition 1.2.1, given P, let B be the set of elements of A satisfying

P. The hypothesis of the principle says exactly that B is closed under the set of rules in R,

and the second claim of Proposition 1.2.1 then implies that every element of A satisfies P.

The abstract characterization of A as the intersection of all inductive subsets of U is clever,

but, from a foundational point of view, it is heavy-handed: we have defined A by reference

to the collection of all the subsets of U , which may be very large. To make matters worse,

it also contains the very object A that is being defined, making it a prototypical example of

an impredicative definition. We can often provide a more explicit description of the set we

are after. If the set of rules R has the property that each rule (S, a) *R is finite, which is

to say, the set S is finite, then we define a finite sequence (a0, . . . , an21) of elements of U

to be a formation sequence (again with respect to R) if, for each i, there is a rule (S, ai)

with S ¦ {a0, . . . , ai21}. Intuitively, this says that every element of the formation sequence

is justified by previous elements of the sequence.

Proposition 1.2.4. With U and R as above, let A be the subset of U defined inductively by

R. Then A is equal to the set of elements a of U such that there is a formation sequence

containing a.

Proof Let B be the set of elements a of U such that there is a formation sequence contain-

ing a. To show that A is a subset of B, we use the induction principle for A. Suppose (S, a)

is a rule in R and there is a formation sequence for each element of S. Since S is finite, we

can concatenate these and append a to obtain a formation sequence for a.

On the other hand, to show that B is a subset of A, let (a0, . . . , an21) be any formation

sequence. Then, using the definition of a formation sequence, it is easy to show by induction

on the natural numbers that for each i, ai * A.

The constructions described here can be described in other terms. Given a universe U and

a set R of rules, define the function � : P(U) ³P(U) by

�(B) = {a * U | for some S ¦ B, (S, a) *R}.

In other words, �(B) consists of the elements that should be added to B in conformance with

the rules. It is easy to check that � is monotone: whenever B ¦ C, we have �(B) ¦ �(C).

Exercise 1.2.2 asks you to show that any monotone operator from P(U) to P(U) has a

www.cambridge.org/9781108478755
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-47875-5 — Mathematical Logic and Computation
Jeremy Avigad
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

8 Fundamentals

least fixed point, which is to say, there is a set A such that �(A) = A and whenever �(B) = B,

A ¦ B. The construction we have described here is the special case where � is defined from a

set of rules, as above. Exercise 1.2.4 asks you to show that, conversely, given any monotone

operator �, the least fixed point of � can be characterized as the smallest set closed under a

suitable set of rules.

Exercises

1.2.1. For each of the examples of inductive definitions in this section, define a corresponding set of

rules explicitly.

1.2.2. Let U be a set, let � be a monotone function from P(U) to P(U), and let

A =
�

{B *P(U) | �(B) ¦ B}.

Note that �(U) ¦ U , so A is the intersection of a nonempty set.

a. Show that �(A) ¦ A. (Hint: show �(A) ¦ B whenever �(B) ¦ B.)

b. Show that A ¦ �(A). So A = �(A) is a fixed point of �.

c. Show that if B is any other fixed point, A ¦ B.

So A is the least fixed point. The construction generalizes to arbitrary complete lattices. The

statement that every monotone function on a complete lattice has a least fixed point is called

the Knaster–Tarski theorem.

1.2.3. The following provides an alternative “bottom-up” definition of the least fixed point of �, using

principles of transfinite recursion along suitable ordinals. (It requires some basic set theory.)

Let � be monotone. Define a sequence of subsets of U by transfinite recursion on the ordinals,

as follows:

" A0 = '

" A³+1 = �(A³)

" A» =
"

³<» A³ , for limit ordinals ».

Do the following:

a. Show that whenever ³ < ³, A³ ¦ A³ .

b. Show, using cardinality considerations, that for some ³, A³ = A³+1. (In fact, ³ < |U |+, the

least cardinal larger than the cardinality of U .) After that, the process stabilizes, so A³ is a

fixed point of �.

c. Show that if B is any fixed point of �, then for every ³, A³ ¦ B. In particular, A³ is the least

fixed point.

1.2.4. Let � be a monotone function from P(U) to P(U) and define the set of rules R= {(S, a) | a *

�(S)}.

a. Show that for any B ¦ U , �(B) ¦ B if and only if B is closed under R.

b. Show that the least fixed point of � is exactly the subset of U inductively generated by R.

1.2.5. Show that every monotone function from P(U) to P(U) also has a greatest fixed point.

1.3 Terms and Formulas

We will now apply the abstract machinery we have just developed to the relatively concrete

tasks of defining syntactic objects like terms and formulas. Let L be a language without any

relation symbols, or, if there are any, just ignore them for now. Fix a stock of variables

x0, x1, x2, . . . different from the symbols of L. (We will generally be interested in languages

www.cambridge.org/9781108478755
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-47875-5 — Mathematical Logic and Computation
Jeremy Avigad
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.3 Terms and Formulas 9

with countably many symbols, and we will generally need only countably many variables.

In principle, however, nothing prevents us from using uncountably many symbols and vari-

ables, and this is often useful in model theory.) We want the terms of L to be expressions

built up from the variables and constant symbols using the function symbols in the language.

For example, if L has a constant symbol, c, a unary function symbol, f , and two binary

function symbols, h and k, then the following are examples of terms in L:

c, x0, x1, f (c), f (x0), h( f (x0), x1), k( f (c), h( f (x0), x1)).

Formally, we will take a term in this language to be a string of symbols in alphabet that

includes the symbols in F, the variables, symbols for the open- and close-parentheses, and a

comma. We assume that all these symbols are distinct from one another.

Definition 1.3.1. Let L = (�, �, a) be a language. The set of terms of L is the smallest set

of strings over the alphabet above satisfying the following:

" If x is a variable, then x is a term.

" If c is a constant symbol in � (a 0-ary function symbol), then c is a term.

" If f * � has arity k and t0, . . . , tk21 are all terms, then so is f (t0, . . . , tk21).

I have taken some notational liberties in this definition. The first condition says, more pre-

cisely, that if x is any variable, then the string ‘x’ is a term. The conclusion of the third condi-

tion says, more properly, that the string ‘ f (’�t�0 ‘,’� . . .� ‘,’�t�k ‘)’ is a term. I will generally

rely on the more convenient manner of presentation above and leave these details implicit.

There are additional syntactic nuances. Assuming we have fixed a set of variables

{x0, x1, . . .}, the inscription “x” in the definition is a variable ranging over these symbols.

Similarly, the inscriptions “t0,” . . . , “tk21” in the third condition range over terms, which is

to say, they are variables ranging over syntactic expressions. Bearing in mind the distinction

between theory and metatheory, these are sometimes called metavariables, to distinguish

them between the symbols for variables in the formal language we are constructing. Once

again, I will avoid such ponderous language and trust you to be mindful of the difference.

Notice that this definition is an instance of Example 1.2.3, since the set of terms is gener-

ated by the following collection of functions on strings:

" for each variable x, the string ‘x’

" for each 0-ary symbol c in �, the string ‘c’

" for each k-ary symbol f in F with k > 0, the k-ary function f̄ which takes as input arbi-

trary strings t0, . . . , tk21 and assembles the string f (t0, . . . , tk21).

We can use induction to prove some basic facts about terms.

Proposition 1.3.2. Every term in a language L has the same number of left and right paren-

theses.

Proof The claim is true of the base cases, namely, the variables and constants. And, as-

suming it is true for t0, . . . , tk21, it is also true of the string of symbols f (t0, . . . , tk21).

The following is even easier to prove by induction:

Proposition 1.3.3. Let t be any term of L. Then either t is a constant symbol, or t is a

variable, or there are a k-ary function symbol f of L and a sequence of terms s0, . . . , sk21

such that t is the string f (s0, . . . , sk21).

www.cambridge.org/9781108478755
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-47875-5 — Mathematical Logic and Computation
Jeremy Avigad
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

10 Fundamentals

What is not nearly as obvious is that a given term falls into one of these three categories in a

unique way. Establishing this stronger fact has to rely on the specific details of the definition.

If we had allowed infix notation like t0 + t1 and t0 · t1 and failed to include parentheses, then

a term like x0 + x1 · x2 would be ambiguous; it could arise from applying the + construction

to x0 and x1 · x2, or the · construction to x0 + x1 and x2. We therefore need to prove that our

current definition avoids such ambiguity.

Theorem 1.3.4. On the set of terms, the generating functions are injective and their images

are disjoint from one another.

Proof It is easy to see that the images of all the operations are disjoint, because each string

begins with the corresponding symbol, and we are assuming that the variables, constant

symbols, and function symbols are all distinct. So all that remains is to show that each term-

forming operation is injective.

So suppose f is a k-ary function symbol with k > 0, t0, . . . , tk21, t"0, . . . , t"k21 are all terms,

and f (t0, . . . , tk21) and f (t"0, . . . , t"k21) are equal, which is to say, they are the same string

of symbols. Dropping the first two characters and the last character, we have that the two

strings ‘t0, . . . , tk21’ and ‘t"0, . . . , t"k21’ are the same. We need to show that each tj is equal

to t"j, which is to say, the two strings are the same. In other words, we need to show that a

string of symbols cannot be parsed as the concatenation of k-terms, separated by commas,

in two distinct ways.

To prove this, we first establish an auxiliary claim. If s and t are strings of symbols, say

that s is a proper initial segment of t if s is strictly shorter than t, and the two sequences of

characters agree up to the length of s. I claim that if t is any term and s is a proper initial

segment of t, then s is not a term. We prove this by induction on terms. The only proper

initial segment of a constant or variable is the empty string, which is not a term (prove

this by induction on terms as well). In the induction step, suppose f is a k-ary function

symbol with k > 0, and s is a proper initial segment of f (t0, . . . , tk21). Then it has one of

the following forms:

" the empty string

" f

" f (

" f (t0, . . . , tj
" f (t0, . . . , tj, t"

where, in the last case, t" is a proper initial segment of tj+1. It is not hard to verify that

the first three are not terms (again, using induction on terms). We have already established

that every term has the same number of left and right parentheses, so the fourth case has

more left parentheses than right parentheses, and hence is not a term. To handle the last

case, we need to establish the slightly stronger assertion that any initial segment of a term

has no more right parentheses than left parentheses, which is again easy to do, by induction

on terms.

Returning to the main proof, since ‘t0, . . . , tk21’ and ‘t"0, . . . , t"k21’ are the same string, ei-

ther t0 is equal to t"0, or one is a proper initial segment of the other. By the previous claim, the

latter is impossible, so t0 and t"0 are equal. Dropping these and the subsequent comma from

each string, we have that ‘t1, . . . , tk21’ and ‘t"1, . . . , t"k21’ are the same string. Proceeding

iteratively in this way, we obtain that each tj is equal to t"j, as required.

www.cambridge.org/9781108478755
www.cambridge.org

