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Background

1.1 Purpose

Here, we review some well-known mathematical concepts that are helpful in

developing the ideas of this work. These are primarily in the areas of matrix

analysis, convexity, and an important theorem of the alternative (linear inequal-

ities). In the latter two cases, we mention all that is needed. In the case of

matrices, see the general reference [HJ13], or a good elementary linear algebra

book, for facts or notation we use without further explanation.

1.2 Matrices

1.2.1 Matrix and Vector Notation

We use R
n (Cn) to denote the set of all n-component real (complex) vectors,

thought of as columns, and Mm,n(F) to denote the m-by-n matrices over a

general field F. Skipping the field means F = C and Mn,n(F) is abbreviated to

Mn(F).

Inequalities, such as >, ≥, are to be interpreted entry-wise, so that x > 0

means that all entries of a vector x are positive. If all entries of x are nonnegative,

but not all zero, we write x ≥ 0, �= 0.

The transpose of A = [aij] ∈ Mm,n is denoted by AT and the conjugate

transpose (orHermitian adjoint) byA∗. TheHermitian and skew-Hermitian

parts of A are, respectively, denoted by

H(A) =
A+ A∗

2
and S(A) =

A− A∗

2
.

The spectrum, or set of eigenvalues, of A ∈ Mn is denoted by σ(A) and the

spectral radius by ρ(A) = max
λ∈σ(A)

|λ|.
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2 Background

Submatrices play an important role in analyzing matrix structure. For 〈m〉 =

{1, 2, . . . ,m} and 〈n〉 = {1, 2, . . . , n}, denote by A[α,β] the submatrix of

A ∈ Mm,n(F) lying in rows α ⊆ 〈m〉 and columns β ⊆ 〈n〉. If m = n and

α = β, we abbreviate A[α,α] to A[α] and refer to it as a principal submatrix

of A; we call A[α] a proper principal submatrix if α is a proper subset of

〈n〉. A submatrix of A ∈ Mn of the form A[〈k〉] for some k ≤ n is called a

leading principal submatrix. A submatrix may also be indicated by deletion

of row and column indices, and for this round brackets are used. For example,

A(α,β) = A[αc,βc], in which the complementation is relative to 〈m〉 and 〈n〉,

respectively. If an index set is a singleton i, we abbreviate A({i}), for example,

to A(i) in case m = n.

Given a square submatrix A[α,β] of A ∈ Mm,n, we refer to det(A[α,β]) as

a minor of A, or as a principal minor if α = β. The determinant of a leading

principal submatrix is referred to as a leading principal minor. By convention,

if α = ∅, then det(A[α]) = 1.

1.2.2 Gershgorin’s Theorem

For A = [aij] ∈ Mn(C), for each i = 1, 2, . . . , n, define

R′
i(A) =

n
∑

j=1,j �=i

|aij| and the discs Ŵi(A) = {z ∈ C : |z− aii| ≤ R′
i(A)}.

Gershgorin’s Theorem then says that σ(A) ⊆ ∪n
i=1Ŵi(A). This has the impli-

cation that a diagonally dominant matrix A ∈ Mn(C) (i.e., |aii| > R′
i(A),

i = 1, 2, . . . , n) has nonzero determinant. In particular, the determinant is of

the same sign as the product of the diagonal entries, in the case of real matrices.

1.2.3 Perron’s Theorem

If A ∈ Mn(R), A > 0, then very strong spectral properties follow as initially

observed by Perron (Perron’s Theorem). These include

• ρ(A) ∈ σ(A); (1.2.1)

• the multiplicity of ρ(A) is one; (1.2.2)

• λ ∈ σ(A), |λ| = ρ(A) �⇒ λ = ρ(A); (1.2.3)

• there is a right (left) eigenvector of A with all entries positive; (1.2.4)

• 0 < B ≤ A, B �= A implies ρ(B) < ρ(A); (1.2.5)

• No eigenvector (right or left) of A has all

nonnegative entries besides those associated with ρ(A). (1.2.6)
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1.3 Convexity 3

There are slightly weaker statements for various sorts of nonnegative

matrices; see [HJ91, chapter 8].

1.2.4 Schur Complements

If

A =

[

A11 A12

A21 A22

]

∈ Mn

and A22 is square and invertible, the Schur complement (of A22 in A) is

A/A22 = A11 − A12A
−1
22 A21.

More generally, if α ⊆ 〈n〉 is an index set, then

A/A[α] = A(α) − A[αc,α]A[α]−1A[α,αc]

is the Schur complement of A[α] in A if A[α] is invertible. Schur complements

enjoy many nice properties, such as

detA = detA[α] det(A/A[α]),

which motivates the notation. Reference [Zha05] is a good reference on Schur

complements and contains a detailed discussion of Schur complements in pos-

itivity classes.

1.3 Convexity

1.3.1 Convex Sets in R
n and Mm,n(R)

A convex combination of a collection of elements ofRn is a linear combination

whose coefficients are nonnegative and sum to 1. A subset S of Rn orMm,n(R)

is convex if it is closed under convex combinations. It suffices to know closure

for pairs of elements, and geometrically this means that a set is convex if the

line segment joining any two elements lies in the set.

An extreme point of a convex set is one that cannot be written as a con-

vex combination of two distinct points in the set. The generators of a convex

set are a minimal set of elements from which any element of the set may be

written as a convex combination. For finite dimensions (our case), the extreme

points are the generators. If there are finitely many, the convex set is called

polyhedral.

A (convex) cone is just a convex set that is closed under linear combination

whose coefficients are nonnegative (no constraint on the sum). A cone may also
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4 Background

be finitely generated (polyhedral cross section) or not. The dual of a cone C is

just the set

C
D = {x : x · y ≥ 0, whenever x ∈ C},

in which · denotes an inner product defined on the underlying space.

The convex hull of a collection of points is just the set of all possible convex

combinations. This is a convex set, and any convex set is the convex hull of its

generators.

1.3.2 Helly’s Theorem

The intersection of finitely many convex sets is again a convex set (possibly

empty). Given a collection of convex sets (possibly infinite) in a d dimensional

space, the intersection of all of them is nonempty if and only if the intersec-

tion of any d + 1 of them is nonempty. This is known as Helly’s Theorem

[Hel1923] and can provide a powerful tool to show the existence of a solution

to a system of equations.

1.3.3 Hyperplanes and Separation of Convex Sets

In an inner product space of dimension d, such as Rd, a special kind of convex

set is a half-space

Ha = {x : a · x ≥ 0},

in which a �= 0 is a fixed element of the inner product space. Any intersection

of half-spaces is a convex set, and any closed convex set is an intersection of

half-spaces. The complement of a half-space,

Hc
a = {x : a · x < 0},

is an open half-space. The set

{x : a · x = 0}

is a (d − 1)-dimensional hyperplane that separates the two half-spaces Ha

and Hc
a. If two convex sets S1, S2 in a d-dimensional space do not intersect,

then they may be separated by a (d − 1)-dimensional hyperplane, so that

S1 ⊆ Ha and S2 ⊆ H−a. If S1 and S2 are both closed or both open, we may

use nonintersecting open half-spaces: S1 ⊆ Hc
a and S2 ⊆ Hc

−a. If S1 and S2 do

intersect but only in a subset of a hyperplane, then such a hyperplane may be

used to separate them: S1 ⊆ Ha and S2 ⊆ H−a.
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1.4 Theorem of the Alternative 5

For further background on convex sets, see the general reference [Rock97].

1.4 Theorem of the Alternative

In the theory of linear inequalities (or optimization), there is a variety of state-

ments saying that exactly one of two systems of linear inequalities has a solu-

tion. Such statements, and there are many variations, are called Theorems of

the Alternative (and there are such theorems in even more general contexts).

Such statements can be a powerful tool for showing that one system of inequal-

ities has a solution, by ruling out the other; however, they generally are not able

to provide any particular solution. The book [Man69] provides nice discussion

of several theorems of the alternative and relations among them.

A particular version of the theorem of the alternative that is especially useful

for us is the following:

Theorem 1.4.1 Let A ∈ Mm,n(R). Then, either

(i) there is an x ∈ R
n, x ≥ 0, such that Ax > 0

or

(ii) there is a y ∈ R
m, y ≥ 0, y �= 0, such that yTA ≤ 0,

but not both.

The “not both” portion is clear, as by (i), yTAx > 0 and because of (ii),

yTAx ≤ 0. In the event that m = n and A is symmetric, we have

Corollary 1.4.2 Let A ∈ Mn(R) and AT = A. Then, either

(i) there is an x ∈ R
n, x ≥ 0, such that Ax > 0

or

(ii) there is a y ∈ R
m, y ≥ 0, y �= 0, such that Ay ≤ 0,

but not both.
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Positivity Classes

2.1 Introduction

There are a remarkable number of ways that the notion of positivity for scalars

has been generalized to matrices. Often, these represent the differing needs of

applications, or differing natural aspects of the classical notion. Typically, the

various ways involve the entries, transformational characteristics, the minors,

the quadratic form, and combinations thereof. Our purpose here is to identify

each of the generalizations and some of their basic characteristics. Usually there

are natural variations that we also identify and relate. Several of these general-

izations have been treated, in some depth, in book or survey form elsewhere; if

so, we give some of the most prominent or accessible references. Our purpose

in this work is to then treat in subsequent chapters those generalizations for

which there seems not yet to be sufficiently general treatment in one place.

The order in which we give the generalizations is roughly grouped by type.

We then summarize the containments among the positivity classes; one of them

includes all the others.

2.2 (Entry-wise) Positive Matrices (EP)

One of the most natural generalizations of a positive number is reflected in the

entries of a matrix. In general, adjectives, such as positive and nonnegative,

refer to the entries of a matrix. The ways in which n-by-n positive matrices

generalize the notion of a positive number are indicated in Perron’s theorem;

see Section 1.2.3.

Careful treatments of the theory of positive matrices may be found in several

sources, such as [HJ13]. There are many further facts. Because of Frobenius’s

work on nonnegative matrices, the general theory is referred to as Perron–

Frobenius theory.
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2.3 M-Matrices (M) 7

There are important variants on positive matrices. For their closure, the non-

negative matrices, the spectral radius is still an eigenvalue, but all the other

conclusions must be weakened somewhat. For nonnegative and irreducible

matrices
(

PTAP �=
[

A11 A12
0 A22

]

, with A11 and A22 square and nonempty for any

permutation P
)

, only property (1.2.3) must be weakened to allow other eigen-

values on the spectral circle. And, if some power, Aq, is positive, the stronger

conclusions remain valid. The following are simple examples that illustrate

what might occur.

[

1 1
1 1

]

The Perron root (spectral radius) is strictly dominant when the matrix is

entry-wise positive.
[

1 1
1 0

]

It remains so if the matrix is not positive but some power is positive

(primitive matrix).
[

0 1
1 0

]

The Perron root remains of multiplicity 1, but there may be ties for spec-

tral radius when the matrix is irreducible but not primitive.
[

1 0
0 1

]

,
[

1 1
0 1

]

The Perron root may be multiple and geometrically so, or not,

when the matrix is reducible.
[

1 0
0 0

]

,
[

1 0
1 0

]

Or the Perron root may still have multiplicity 1, even when the

matrix is reducible.
[

0 1
0 0

]

The Perron root may be 0.

The nonnegative orthant in R
n is the closed cone that contains all entry-

wise nonnegative vectors and is denoted by R
n
+. The n-by-n nonnegative

matrices (A ≥ 0) are simply those that map the nonnegative orthant in

R
n into itself (ARn

+ ⊆ R
n
+). The n-by-n positive matrices (A > 0, or

A ∈ EP that stands for entry-wise positive) are those that map the nonzero

elements of Rn
+ into the interior of this cone. Matrices that map other cones

of Rn with special structure into themselves emulate the spectral structure of

nonnegative matrices, and this has been studied from several points of view in

some detail.

Also studied have been matrices with some negative entries that still enjoy

some or all of the above Perron conclusions or their Frobenius weakenings:

A ∈ Mn(R) is eventually nonnegative (positive) if there is an integer k such

that Ap ≥ 0 (> 0) for all p ≥ k.

2.3 M-Matrices (M)

A matrix A = [aij] ∈ Mn(R) is called a Z-matrix (A ∈ Z) if aij ≤ 0 for all

i �= j. Thus, a Z-matrixAmay bewrittenA = αI−P in whichP is a nonnegative
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8 Positivity Classes

matrix. If α > ρ(P), then A is called a (non-singular) M-matrix (A ∈ M). In

several sources ([BP94, HJ91, FP62, NP79, NP80]) there are long lists of rather

diverse-appearing conditions that are equivalent to A being an M-matrix, pro-

vided A is a Z-matrix. A modest list is the following:

1. A is positive stable, i.e., all eigenvalues of A are in the open right half-

plane.

2. The leading principal minors of A are positive;

3. All principal minors of A are positive, i.e., A is a P-matrix;

4. A−1 exists and is a nonnegative matrix;

5. A is a semipositive matrix;

6. There exists a positive diagonal matrix D such that AD is row diagonally

dominant;

7. There exist positive diagonal matrices D and E such that EAD is row and

column diagonally dominant;

8. For each k = 1, . . . , n, the sum of the k-by-k principal minors of A is

positive;

9. A has an L–U factorization in which L and U have positive diagonal

entries.

In addition, M-matrices are closed under positive scalar multiplication,

extraction of principal submatrices, and of Schur complements, and the so-

called Fan product (which is the entry-wise or Hadamard product, except

that the off-diagonal signs are retained). They are not closed under either

addition or matrix multiplication.

M-matrices, A = [aij] ∈ Mn(R), also satisfy classical determinantal

inequalities, such as

10. Hadamard’s inequality: detA ≤
∏n

i=1 aii;

11. Fischer’s inequality: detA ≤ detA[α] detA[αc], α ⊆ {1, . . . , n};

12. Koteljanskii’s inequality: detA[α ∪β] detA[α ∩β] ≤ detA[α] detA[β],

α,β ⊆ {1, . . . , n}.

A complete description of all such principal minor inequalities is given in

[Joh98].

M-matrices are not only positive stable, but, among Z-matrices, when all real

eigenvalues are in the right half-plane, all eigenvalues are as well. They also

have positive diagonal Lyapunov solutions, i.e., there is a positive diagonal

matrix D such that DA+ ATD is positive definite.

If A = I − P is an irreducible M-matrix and we assume that ρ(P) < 1, then

A is invertible and A−1 = I + P + P2 + · · · Because P is irreducible, A−1

is positive. If A had been reducible, A−1 would be nonnegative. A matrix is

inverse M (IM) if it is the inverse of an M-matrix, or if it is a nonnegative

invertible matrix whose inverse is a Z-matrix. Among nonnegative matrices,
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2.5 Positive Definite Matrices (PD) 9

the inverse M-matrices have a great deal of structure, and Chapter 5 is devoted

to developing that structure for the first time in one place.

2.4 Totally Positive Matrices (TP)

A much stronger positivity requirement than that a matrix be positive is that

all of its minors be positive. Such a matrix is called totally positive (TP).

Such matrices arise in a remarkable variety of ways, and, of course, they also

have very strong properties. The eigenvalues are positive and distinct, and the

eigenvectors are highly structured in terms of the signs of their entries relative

to the order in which the eigenvalue lies relative to the other eigenvalues. They

always have an L–U factorization in which every minor of L and U is positive,

unless it is identically 0. The determinantal inequalities of Hadamard, Fischer,

and Koteljanskii (in Section 2.3) are satisfied, as well as many different ones.

Transformationally, if A is TP, Ax cannot have more sign changes than x, and,

of course, the TP matrices are closed under matrix multiplication. Though the

definition requires many minors to be positive, because of Sylvester’s determi-

nantal identity, relatively few need be checked; the contiguous minors (both

index sets are consecutive) suffice, and even the initial minors (those contigu-

ous minors of which at least one index set begins with index 1) suffice. The

initial minors are as numerous as the entries.

There are several comprehensive sources available for TP (and related)

matrices, including the most recent book [FJ11]. Prior sources include the

book [GK1935] and the survey [And80].

There are a number of natural variants on TP matrices. A totally non-

negative matrix, TN, is one in which all minors are nonnegative. TN is

the topological closure of TP, and the properties are generally weaker.

Additional variants are TPk and TNk in which each k-by-k submatrix is TP

(respectively, TN).

2.5 Positive Definite Matrices (PD)

Perhaps the most prominent positivity class is defined by the quadratic form for

Hermitian matrices. Matrix A ∈ Mn(R) is called positive definite (A ∈ PD) if

A is Hermitian (A∗ = A) and, for all 0 �= x ∈ C
n, xTAx > 0.

There are several good sources on PD matrices, including [HJ13, Joh70,

Bha07].

The PD matrices are closed under addition and positive scalar multiplica-

tion (they form a cone in Mn(C)), and under the Hadamard product, but not
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10 Positivity Classes

under conventional matrix multiplication. They are closed under extraction of

principal submatrices and Schur complements. Among Hermitian matrices, all

positive eigenvalues, positive leading principal minors, and all principal minors

positive are each equivalent to being PD. A matrix A ∈ Mn(C), is PD if and

only if A = B∗B, with B ∈ Mn(C), nonsingular; B may always be taken to be

upper triangular (Cholesky factorization).

The standard variation on PD is positive semidefinite matrices, PSD, in

which the quadratic form is only required to be nonnegative. PSD is the clo-

sure of PD, and most of the weakened properties follow from this. Of course,

negative definite (ND = −PD) and negative semidefinite (NSD = −PSD)

are not generalizations of positivity.

Another important variation is, of course, that the Hermitian part

H(A) = A+A∗

2
is PD. In the case of Mn(R) this just means that the quadratic

form is positive, but the matrix is not required to be symmetric. Another

variation is that H(A) be PSD. There are some references that consider the

former class, e.g., [Joh70, Joh72, Joh73, Joh75a, Joh75b, Joh75c, BaJoh76].

2.6 Strictly Copositive Matrices (SC)

An important generalization of PSD matrices is the copositive matrices

(C) for which it is only required that the quadratic form be nonnegative on

nonnegative vectors: A ∈ Mn(R) is copositive if AT = A and xTAx ≥ 0 for all

x ≥ 0.

Much theory has been developed about the subtle class of copositive matri-

ces. Because there is no comprehensive reference, Chapter 6 is devoted to

this class. Variations include the strictly copositive matrices (SC) for which

positivity of the quadratic form is required on nonnegative, nonzero vectors,

and copositive +, the copositive matrices for which x ≥ 0 and xTAx = 0

imply Ax = 0. Also, the real matrices with Hermitian part in C or SC could be

considered.

2.7 Doubly Nonnegative Matrices (DN)

The intersection of the cone of (symmetric) nonnegative matrices and the cone

of PD matrices in Mn(R) is the cone of doubly nonnegative matrices (DN).

Natural variations include the closure of DN (nonnegative and PSD) and the

doubly positive matrices (DP), which are positive and PD. The most natural
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