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Recent research in inverse problems seeks to develop a mathematically co-
herent foundation for combining data-driven models, and in particular those
based on deep learning, with domain-specific knowledge contained in physical–
analytical models. The focus is on solving ill-posed inverse problems that are
at the core of many challenging applications in the natural sciences, medicine
and life sciences, as well as in engineering and industrial applications. This
survey paper aims to give an account of some of the main contributions in
data-driven inverse problems.
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1. Introduction

In several areas of science and industry there is a need to reliably recover
a hidden multi-dimensional model parameter from noisy indirect observa-
tions. A typical example is when imaging/sensing technologies are used in
medicine, engineering, astronomy and geophysics. These so-called inverse
problems are often ill-posed, meaning that small errors in data may lead to
large errors in the model parameter, or there are several possible model para-
meter values that are consistent with observations. Addressing ill-posedness
is critical in applications where decision making is based on the recovered
model parameter, for example in image-guided medical diagnostics. Fur-
thermore, many highly relevant inverse problems are large-scale: they in-
volve large amounts of data and the model parameter is high-dimensional.
Traditionally, an inverse problem is formalized as solving an equation of

the form

g = A(f) + e.

Here g * Y is the measured data, assumed to be given, and f * X is the
model parameter we aim to reconstruct. In many applications, both g and
f are elements in appropriate function spaces Y and X, respectively. The
mapping A : X ³ Y is the forward operator, which describes how the model
parameter gives rise to data in the absence of noise and measurement errors,
and e * Y is the observational noise that constitutes random corruptions in
the data g. The above view constitutes a knowledge-driven approach, where
the forward operator and the probability distribution of the observational
noise are derived from first principles.
Classical research on inverse problems has focused on establishing condi-

tions which guarantee that solutions to such ill-posed problems exist and on
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methods for approximating solutions in a stable way in the presence of noise
(Engl, Hanke and Neubauer 2000, Benning and Burger 2018, Louis 1989,
Kirsch 2011). Despite being very successful, such a knowledge-driven ap-
proach is also associated with some shortcomings. First, the forward model
is always an approximate description of reality, and extending it might be
challenging due to a limited understanding of the underlying physical or
technical setting. It may also be limited due to computational complex-
ity. Accurate analytical models, such as those based on systems of non-
linear partial differential equations (PDEs), may reach a numerical com-
plexity beyond any feasible real-time potential in the foreseeable future.
Second, most applications will have inputs which do not cover the full model
parameter space, but stem from an unknown subset or obey an unknown
stochastic distribution. The latter shortcoming in particular has led to the
advance of methods that incorporate information about the structure of the
parameters to be determined in terms of sparsity assumptions (Daubechies,
Defrise and De Mol 2004, Jin and Maass 2012b) or stochastic models (Kaipio
and Somersalo 2007, Mueller and Siltanen 2012). While representing a sig-
nificant advancement in the field of inverse problems, these models are,
however, limited by their inability to capture very bespoke structures in
data that vary in different applications.

At the same time, data-driven approaches as they appear in machine
learning offer several methods for amending such analytical models and for
tackling these shortcomings. In particular, deep learning (LeCun, Bengio
and Hinton 2015), which has had a transformative impact on a wide range
of tasks related to artificial intelligence, ranging from computer vision and
speech recognition to playing games (Igami 2017), is starting to show its
impact on inverse problems. A key feature in these methods is the use
of generic models that are adapted to specific problems through learning
against example data (training data). Furthermore, a common trait in the
success stories for deep learning is the abundance of training data and the
explicit agnosticism from a priori knowledge of how such data are gener-
ated. However, in many scientific applications, the solution method needs
to be robust and there is insufficient training data to support an entirely
data-driven approach. This seriously limits the use of entirely data-driven
approaches for solving problems in the natural and engineering sciences, in
particular for inverse problems.

A recent line of development in computational sciences combines the
seemingly incompatible data- and knowledge-driven modelling paradigms.
In the context of inverse problems, ideally one uses explicit knowledge-driven
models when there are such available, and learns models from example data
using data-driven methods only when this is necessary. Recently several al-
gorithms have been proposed for this combination of model- and data-driven
approaches for solving ill-posed inverse problems. These results are still
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primarily experimental and lack a thorough theoretical foundation; never-
theless, some mathematical concepts for treating data-driven approaches for
inverse problems are emerging.
This survey attempts to provide an overview of methods for integrating

data-driven concepts into the field of inverse problems. Particular emphasis
is placed on techniques based on deep neural networks, and our aim is to
pave the way for future research towards providing a solid mathematical
theory. Some aspects of this development are covered in recent reviews of
inverse problems and deep learning, for instance those of McCann, Jin and
Unser (2017), Lucas, Iliadis, Molina and Katsaggelos (2018) and McCann
and Unser (2019).

1.1. Overview

This survey investigates algorithms for combining model- and data-driven
approaches for solving inverse problems. To do so, we start by reviewing
some of the main ideas of knowledge-driven approaches to inverse prob-
lems, namely functional analytic inversion (Section 2) and Bayesian inver-
sion (Section 3), respectively. These knowledge-driven inversion techniques
are derived from first principles of knowledge we have about the data, the
model parameter and their relationship to each other.
Knowledge- and data-driven approaches can now be combined in several

different ways depending on the type of reconstruction one seeks to com-
pute and the type of training data. Sections 4 and 5 represent the core
of the survey and discuss a range of inverse problem approaches that in-
troduce data-driven aspects in inverse problem solutions. Here, Section 4
is the data-driven sister section to functional analytic approaches in Sec-
tion 2. These approaches are primarily designed to combine data-driven
methods with functional analytic inversion. This is done either to make
functional analytic approaches more data-driven by appropriate paramet-
rization of these approaches and adapting these parametrizations to data, or
to accelerate an otherwise costly functional analytic reconstruction method.
Many reconstruction methods, however, are not naturally formulated

within the functional analytic view of inversion. An example is the posterior
mean reconstruction, whose formulation requires adopting the Bayesian
view of inversion. Section 5 is the data-driven companion to Bayesian inver-
sion in Section 3, and surveys methods that combine data- and knowledge-
driven methods in Bayesian inversion. The simplest is to apply data-driven
post-processing of a reconstruction obtained via a knowledge-driven method.
A more sophisticated approach is to use a learned iterative scheme that
integrates a knowledge-driven model for how data are generated into a
data-driven method for reconstruction. The latter is done by unrolling
a knowledge-driven iterative scheme, and both approaches, which compute
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statistical estimators, can be combined with forward operators that are par-
tially learned via a data-driven method.
The above approaches come with different trade-offs concerning demands

on training data, statistical accuracy and robustness, functional complex-
ity, stability and interpretability. They also impact the choice of machine
learning methods and algorithms for training. Certain recent – and some-
what anecdotal – topics of data-driven inverse problems are discussed in
Section 6, and exemplar practical inverse problems and their data-driven
solutions are presented in Section 7.
Within data-driven approaches, deep neural networks will be a focus

of this survey. For an introduction to deep neural networks the reader
might find it helpful to consult some introductory literature on the topic.
We recommend Courville, Goodfellow and Bengio (2017) and Higham and
Higham (2018) for a general introduction to deep learning; see also Vidal,
Bruna, Giryes and Soatto (2017) for a survey of work that aims to provide a
mathematical justification for several properties of deep networks. Finally,
the reader may also consult Ye, Han and Cha (2018), who give a nice survey
of various types of deep neural network architectures.

Detailed structure of the paper. In Section 2 we discuss functional ana-
lytic inversion methods, and in particular the mathematical notion of ill-
posedness (Section 2.3) and regularization (Section 2.4) as a means to coun-
teract the latter. A special focus is on variational regularization methods
(Sections 2.5–2.7), as those reappear in bilevel learning in Section 4.3 in the
context of data-driven methods for inverse problems.
Statistical – and in particular Bayesian – approaches to inverse problems

are described in Section 3. In contrast to functional analytic approaches
(Section 2.4), in Bayesian inversion (Section 3.1) the model parameter is a
random variable that follows a prior distribution. A key difference between
Bayesian and functional analytic inversion is that in Bayesian inversion an
approximation to the whole distribution of the model parameter conditioned
on the measured data (posterior distribution) is computed, rather than a
single model parameter as in functional analytic inversion. This means that
reconstructed model parameters can be derived via different estimates of
its posterior distribution (a concept that we will encounter again in Sec-
tion 5, and in particular Section 5.1.2, where data-driven reconstructions
are phrased as results of different Bayes estimators), but also that uncer-
tainty of reconstructed model parameters can be quantified (Section 3.2.5).
When evaluating different reconstructions of the model parameter – which
is again important when defining learning, i.e. optimization criteria for in-
verse problem solutions – aspects of statistical decision theory can be used
(Section 3.3). Also, the parallel concept of regularization, introduced in
Section 3 for the functional analytic approach, is outlined in Section 3.2 for
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statistical approaches. The difficult problem of selecting a prior distribution
for the model parameter is discussed in Section 3.4.
In Section 4 we present some central examples of machine learning com-

bined with functional analytic inversion. These encompass classical para-
meter choice rules for inverse problems (Section 4.1) and bilevel learning
(Section 4.3) for parameter learning in variational regularization methods.
Moreover, dictionary learning is discussed in Section 4.4 as a companion to
sparse reconstruction methods in Section 2.7, but with a data-driven diction-
ary. Also, the concept of a black-box denoiser, and its application to inverse
problems by decoupling the regularization from the inversion of the data, is
presented in Section 4.6. Two recent approaches that use deep neural net-
work parametrizations for data-driven regularization in variational inversion
models are investigated in Section 4.7. In Section 4.9 we discuss a range
of learned optimization methods that use data-driven approximations as a
means to speed up numerical computation. Finally, in Section 4.10 we in-
troduce a new idea of using the recently introduced concept of deep inverse
priors for solving inverse problems.
In Section 5 learning data-driven inversion models are phrased in the con-

text of statistical regularization. Section 5.1.2 connects back to the difficulty
in Bayesian inversion of choosing an appropriate prior (Section 3.4), and
outlines how model learning can be used to compute various Bayes estim-
ators. Here, in particular, fully learned inversion methods (Section 5.1.3),
where the whole inversion model is data-driven, are put in context with
learned iterative schemes (Section 5.1.4), in which data-driven components
are interwoven with inverse model assumptions. In this context also we
discuss post-processing methods in Section 5.1.5, where learned regulariza-
tion together with simple knowledge-driven inversion methods are used se-
quentially. Section 5.2 addresses the computational bottleneck of Bayesian
inversion methods by using learning, and shows how one can use learning
to efficiently sample from the posterior.
Section 6 covers special topics of learning in inverse problems, and in Sec-

tion 6.1 includes task-based reconstruction approaches that use ideas from
learned iterative reconstruction (Section 5.1.4) and deep neural networks for
segmentation and classification to solve joint reconstruction-segmentation
problems, learning physics-based models via neural networks (Section 6.2.1),
and learning corrections to forward operators by optimization methods that
perform joint reconstruction-operator correction (Section 6.2).
Finally, Section 7 illustrates some of the data-driven inversion methods

discussed in the paper by applying them to practical inverse problems.
These include an introductory example on inversion of ill-conditioned lin-
ear systems to highlight the intricacy of using deep learning for inverse
problems as a black-box approach (Section 7.1), bilevel optimization from
Section 4.3 for parameter learning in TV-type regularized problems and
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variational models with mixed-noise data fidelity terms (Section 7.2), the ap-
plication of learned iterative reconstruction from Section 5.1.4 to computed
tomography (CT) and photoacoustic tomography (PAT) (Section 7.3), ad-
versarial regularizers from Section 4.7 for CT reconstruction as an example
of variational regularization with a trained neural network as a regularizer
(Section 7.4), and the application of deep inverse priors from Section 4.10
to magnetic particle imaging (MPI) (Section 7.5).
In Section 8 we finish our discussion with a few concluding remarks and

comments on future research directions.

2. Functional analytic regularization

Functional analysis has had a strong impact on the development of inverse
problems. One of the first publications that can be attributed to the field
of inverse problems is that of Radon (1917). This paper derived an ex-
plicit inversion formula for the so-called Radon transform, which was later
identified as a key component in the mathematical model for X-ray CT.
The derivation of the inversion formula, and its analysis concerning missing
stability, makes use of operator formulations that are remarkably close to
the functional analysis formulations that would be developed three decades
later.

2.1. The inverse problem

There is no formal mathematical definition of an inverse problem, but from
an applied viewpoint such problems are concerned with determining causes
from desired or observed effects. It is common to formalize this as solving
an operator equation.

Definition 2.1. An inverse problem is the task of recovering the model
parameter ftrue * X from measured data g * Y , where

g = A(ftrue) + e. (2.1)

Here, X (model parameter space) and Y (data space) are vector spaces
with appropriate topologies and whose elements represent possible model
parameters and data, respectively. Moreover, A : X ³ Y (forward operator)
is a known continuous operator that maps a model parameter to data in
absence of observation noise and e * Y is a sample of a Y -valued random
variable modelling the observation noise.

In most imaging applications, such as CT image reconstruction, elements
in X are images represented by functions defined on a fixed domain Ω ¢ R

d

and elements in Y represent imaging data by functions defined on a fixed
manifold M that is given by the acquisition geometry associated with the
measurements.
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2.2. Introduction to some example problems

In the following, we briefly introduce some of the key inverse problems we
consider later in this survey. All are from imaging, and we make a key
distinction between (i) image restoration and (ii) image reconstruction. In
the former, the data are a corrupted (e.g. noisy or blurry) realization of the
model parameter (image) so the reconstruction and data spaces coincide,
whereas in the latter the reconstruction space is the space of images but the
data space has a definition that is problem-dependent. As we will see when
discussing data-driven approaches to inverse problems in Sections 4 and 5,
this differentiation is particularly crucial as the difference between image
and data space poses additional challenges to the design of machine learning
methods. Next, we describe very briefly some of the most common operators
that we will refer to below. Here the inverse problems in Sections 2.2.1–2.2.3
are image restoration problems, while those in Sections 2.2.4 and 2.2.5 are
examples of image reconstruction problems.

2.2.1. Image denoising
The observed data are the ideal solution corrupted by additive noise, so the
forward operator in (2.1) is the identity transform A = id, and we get

g = ftrue + e, (2.2)

In the simplest case the distribution of the observational noise is known.
Furthermore, this distribution may in more advanced problems be correl-
ated, spatially varying and of mixed type.

In Section 7.2 we will discuss bilevel learning of total variation (TV)-
type variational models for denoising of data corrupted with mixed noise
distributions.

2.2.2. Image deblurring
The observed data are given by convolution with a known filter function K
together with additive noise, so (2.1) becomes

g = ftrue 7K + e. (2.3)

Any inverse problem of the type (2.1) with a linear forward operator that
is translation-invariant will be of this form.
In the absence of noise, the inverse problem (image deconvolution) is ex-

actly solvable by division in the Fourier domain, i.e. ftrue =F−1[F [g]/F [K]],
provided that F [K] has infinite support in the Fourier domain. In the pres-
ence of noise, the estimated solution is corrupted by noise whose frequency
spectrum is the reciprocal of the spectrum of the filter K. The distribution
of the observational also has the same considerations as in (2.2). Finally,
extensions include the case of a spatially varying kernel and the case where
K is unknown (blind deconvolution).
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2.2.3. Image in-painting

Here, the observed data represents a noisy observation of the true model
parameter ftrue : Ω ³ R restricted to a fixed measurable set Ω0 ¢ R

n:

g = ftrue
�

�

Ω0

+ e. (2.4)

In the above, ftrue
�

�

Ω0

is the restriction of ftrue to Ω0. Solutions take different

forms depending on the size of connected components in Ω0. Extensions
include the case where Ω0 is unknown or only partially known.

2.2.4. Computed tomography (CT)

The simplest physical model for CT assumes mono-energetic X-rays and dis-
regards scattering phenomena. The model parameter is then a real-valued
function f : Ω ³ R defined on a fixed domain Ω ¢ R

d (d = 2 for two-
dimensional CT and d = 3 for three-dimensional CT) that has unit mass
per volume. The forward operator is the one given by the Beer–Lambert
law:

A(f)(Ë, x) = e−µ
∫
∞

−∞
f(x+sω) ds. (2.5)

Here, the unit vector Ë * Sd−1 and x * Ë⊥ represent the line " : s �³ x+ sË
along which the X-rays travel, and we also assume f decays fast enough for
the integral to exist. In medical imaging, ¿ is usually set to a value that
approximately corresponds to water at the X-ray energies used. The above
represents pre-logarithm (or pre-log) data, and by taking the logarithm (or
log) of data, one can recast the inverse problem in CT imaging to one where
the forward model is the linear ray transform:

A(f)(Ë, x) =

�

∞

−∞

f(x+ sË) ds. (2.6)

For low-dose imaging, pre-log data are Poisson-distributed with mean
A(ftrue), where A is given as in (2.5), that is, g * Y is a sample of g >
Poisson(A(ftrue)). Thus, to get rid of the non-linear exponential in (2.5),
it is common to take the log of data. With such post-log data the forward
operator is linear and given as in (2.6). A complication with such post-
log data is that the noise model becomes non-trivial, since one takes the
log of a Poisson-distributed random variable (Fu et al. 2017). A common
approximate noise model for post-log data is (2.1), with observational noise
e which is a sample of a Gaussian or Laplace-distributed random variable.

In the case of complete data, that is, where a full angular set of data is
measured, an exact inverse is obtained by the (Fourier-transformed) data
backprojected on the same lines as used for the measurements and scaled by
the absolute value of the spatial frequency, followed by the inverse Fourier
transform. Thus, as in deblurring, the noise is amplified, but only lin-
early in spatial frequency, making the problem mildly ill-posed. Extensions
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include the emission tomography problem (single photon emission computed
tomography (SPECT) and positron emission tomography (PET)) where the
line integrals are exponentially attenuated by a function ¿ that may be un-
known. A major challenge in tomography is to consider incomplete data, in
particular the case where only a subset of lines is measured. This problem
is much more ill-posed.
See Sections 7.3, 7.4 and 7.6 for instances of CT reconstruction that use

deep neural networks in the solution of the inverse problem.

2.2.5. Magnetic resonance imaging (MRI)

The observed data are often considered to be samples of the Fourier trans-
form of the ideal signal, so the MRI image reconstruction problem is an
inverse problem of the type (2.1), where the forward operator is given as a
discrete sampling operator concatenated with the Fourier transform. A cor-
rect description of the problem takes account of the complex-valued nature
of the data, which implies that when e is normally distributed then the noise
model of | F−1[g]| is Rician. As in CT, the case of under-sampled data is of
high practical importance. In MRI, the subsampling operator has to consist
of connected trajectories in Fourier space but is not restricted to straight
lines.

Extensions include the case of parallel MRI where the forward operator
is combined with (several) spatial sensitivity functions. More exact forward
operators take account of other non-linear physical effects and can recon-
struct several functions in the solution space.

2.3. Notion of ill-posedness

A difficulty in solving (2.1) is that the solution is sensitive to variations
in data, which is referred to as ill-posedness. More precisely, the notion of
ill-posedness is usually attributed to Hadamard, who postulated that a well-
posed problem must have three defining properties, namely that (i) it has a
solution (existence) that is (ii) unique and that (iii) depends continuously on
the data g (stability). Problems that do not fulfil these criteria are ill-posed
and, according to Hadamard, should be modelled differently (Hadamard
1902, Hadamard 1923).

For example, instability arises when the forward operator A : X ³ Y
in (2.1) has an unbounded or discontinuous inverse. Hence, every non-
degenerate compact operator between infinite-dimensional Hilbert spaces
whose range is infinite naturally leads to ill-posed inverse problems. Slightly
more generally, one can prove that continuous operators with non-closed
range yield unbounded inverses and hence lead to ill-posed inverse problems.
This class includes non-degenerate compact operators as well as convolution
operators on unbounded domains.
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