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Fractal Geometry and Dimension Theory

In this introductory chapter we briefly discuss the history and development

of fractal geometry and dimension theory. We introduce and motivate some

important concepts such as Hausdorff and box dimension. As part of this

discussion we encounter covers and packings, which are central notions in

dimension theory, and introduce the dimension theory of measures.

1.1 The Emergence of Fractal Geometry

A fractal can be described as an object which exhibits interesting features on

a large range of scales; see Figure 1.1. In pure mathematics, the Sierpiński

triangle, the middle third Cantor set, the boundary of the Mandelbrot set, and

the von Koch snowflake are archetypal examples and, in ‘real life’, examples

include the surface of a lung, the horizon of a forest, and the distribution of

stars in the galaxy. The fractal story began in the nineteenth century with

the appearance of a multitude of strange examples exhibiting what we now

understand as fractal phenomena. These included Weierstrass’ example of

a continuous nowhere differentiable function, Cantor’s construction of an

uncountable set with zero length, and Brown’s observations on the path taken

by a piece of pollen suspended in water (Brownian motion). During the first

half of the twentieth century the mathematical foundations for fractal geometry

were laid down by, for example, Besicovitch, Bouligand, Hausdorff, Julia,

Marstrand, and Sierpiński, and the theory was unified and popularised by

the extensive writings of Mandelbrot in the 1970s, for example Mandelbrot

(1982). It was Mandelbrot who coined the term ‘fractal’, derived from
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4 Fractal Geometry and Dimension Theory

the Latin fractus meaning ‘broken’. Since then the subject has grown and

developed as a self-contained discipline in pure mathematics touching on

many other subjects, such as dynamical systems, geometric measure theory,

analysis (real and complex), topology, number theory, probability theory,

and harmonic analysis. However, the importance of fractals is not restricted

to abstract mathematics, with many naturally occurring physical phenomena

exhibiting a fractal structure, such as graphs of random processes, percolation

models, and fluid turbulence. The mathematical challenge is to understand the

mechanisms which generate and underpin fractal behaviour and to develop

robust and rich theories concerning the geometric properties that such objects

possess.

Figure 1.1 Four fractals. From top left moving clockwise: the boundary of

the Mandelbrot set, the Apollonian circle packing, a (self-affine) leaf, and the

Sierpiński triangle.
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1.2 Dimension Theory 5

1.2 Dimension Theory

At the heart of fractal geometry lies dimension theory, the subject dedicated to

understanding how to define, interpret, understand, and calculate dimensions

of sets in Euclidean space or more general metric spaces. A dimension

is a (usually non-negative real) number which gives geometric information

concerning how the object in question fills up space on small scales. There

are many distinct notions of dimension and one of the joys (and central

components) of the subject is in understanding how these notions relate to each

other, and how their behaviour compares in different settings or when applied

to different families of examples.

A natural approach to dimension theory is to quantify how large a set is

at a given scale by considering optimal covers by balls whose diameter is

related to the scale. More precisely, given a scale r > 0, a finite or countable

collection of sets {Ui}i is called an r-cover of a set F if each of the sets Ui

has diameter less than or equal to r , and F is contained in the union
⋃

i Ui ;

see Figure 1.2. Throughout the book we write |U | = supx,y∈U |x − y| for the

diameter of a non-empty set U ⊆ R
d . Understanding how to find covers of a

set at small scales underpins much of dimension theory and often the ‘covering

strategy’ is specific to the setting, sometimes driven by dynamical invariance or

a priori knowledge of another, related, set. This book is dedicated to a thorough

analysis of the Assouad dimension and some of its natural variants. However,

we will often attempt to put our discussion in a wider context for which we

require other notions.

The Hausdorff dimension is arguably the most well-studied and important

notion of fractal dimension. It was introduced by Hausdorff (1918), greatly

developed by Besicovitch, and is considered extensively in many of the

important books on fractal geometry, such as Bishop and Peres (2017);

Falconer (1997, 2014); Mattila (1995). It is defined in terms of Hausdorff

measure, which can be viewed as a natural extension of Lebesgue mea-

sure to non-integer dimensions. Given s � 0 and r > 0, the r-approximate

s-dimensional Hausdorff measure of a set F ⊆ R
d is defined by

H
s
r(F ) = inf

{

∑

i

|Ui |
s : {Ui}i is a countable r-cover of F

}

and the s-dimensional Hausdorff (outer) measure of F is Hs(F )= limr→0

Hs
r(F ). The limit exists because the sequence Hs

r(F ) increases as r decreases,

but it may be infinite. The measures Hs can now be used to identify the

critical exponent or dimension in which it is most appropriate to consider F .

First, consider the square [0,1]2, which has infinite length (length measures
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6 Fractal Geometry and Dimension Theory

objects which are much smaller, such as line segments or smooth curves), and

zero volume (volume measures objects which are much bigger, such as cubes

or spheres). However, the area of the square is positive and finite (it hardly

matters that the precise area is 1), demonstrating that the natural measure to use

when considering squares is area, that is, 2-dimensional Lebesgue measure.

It is no coincidence that we think of the square as a 2-dimensional object.

Since we have continuum many Hausdorff measures to choose from, this leads

naturally to the Hausdorff dimension of F being defined as

dimH F = inf
{

s � 0: Hs(F ) = 0
}

= sup
{

s � 0: Hs(F ) = ∞

}

.

It is a useful exercise to show that these two expressions for the Hausdorff

dimension actually coincide. The value of the Hausdorff measure in the critical

dimension, that is, HdimH F (F ), is often rather hard to compute exactly and can

be any value in [0,∞].

Figure 1.2 Left: a self-affine fractal. Right: a covering of the self-affine fractal

using balls of arbitrarily varying radii. Understanding such covers leads to

calculation of the Hausdorff dimension.

A less sophisticated, but nevertheless very useful, notion of dimension is

box dimension. The lower and upper box dimensions of a non-empty bounded

set F ⊆ R
d are defined by

dimBF = lim inf
r→0

log Nr(F )

− log r
and dimBF = lim sup

r→0

log Nr(F )

− log r
,

respectively, where Nr(F ) is the smallest number of open sets required for an

r-cover of F ; see Figure 1.3. If dimBF = dimBF , then we call the common

value the box dimension of F and denote it by dimB F . Note that, unlike the
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1.2 Dimension Theory 7

Hausdorff dimension, the box dimension is usually only defined for bounded

sets since Nr(F ) = ∞ for any unbounded set.

Notice that for a bounded set F , r > 0 and s � 0,

H
s
r(F ) � rsNr(F ),

which immediately gives dimH F � dimBF � dimBF .

Figure 1.3 Left: the self-affine set from Figure 1.2. Right: a covering using balls

of constant radii. Understanding such covers leads to calculation of the box

dimensions.

One final notion, which we will mention less frequently, is the packing

dimension. This can be defined by a suitable modification of the upper box

dimension designed to make it countably stable; see Section 2.4. For F ⊆ R
d ,

the packing dimension of F is defined by

dimP F = inf

{

sup
i

dimBFi : F =
⋃

i

Fi

}

. (1.1)

This definition works perfectly well for unbounded sets if we assume the Fi

are bounded. Moreover, one immediately gets dimH F � dimP F � dimBF .

The packing dimension turns out to be a natural ‘dual notion’ to the Hausdorff

dimension, where packings are used instead of covers. The usual formulation

of packing dimension first defines packing measure, as a dual to the Hausdorff

measure, and then packing dimension in the natural way. It was first introduced

by Claude Tricot (1982).

We write B(x,r) = {y ∈ R
d : |y − x| � r} to denote the closed ball with

centre x ∈ R
d and radius r > 0. A collection of balls {B(xi,r)}i is called a
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8 Fractal Geometry and Dimension Theory

(centred) r-packing of a set F if the balls are pairwise disjoint and, for all i,

xi ∈ F . A related notion is that of r-separated sets. A set X ⊆ F is called an

r-separated subset of F if each pair of distinct points from X are separated

by a distance of at least r . If ri = r for all i, then the set of centres {xi}i of

balls from an r-packing form a 2r-separated subset of F . It is an elementary

but instructive exercise to prove that if one replaces Nr(F ) in the definition of

upper and lower box dimensions with any of

(i) the maximum number of balls in an r-packing of F ,

(ii) the maximum cardinality of an r-separated subset of F ,

(iii) the number of r-cubes in an axes oriented mesh which intersect F , or

(iv) the minimum number of cubes of sidelength r required to cover F

then one obtains the same values for the box dimensions; see Figure 1.4. See

Falconer (2014, section 2.1) for a more detailed discussion of this, along with

some direct calculations.

Figure 1.4 A packing of the self-affine set from Figure 1.2 using balls of constant

radii centred in F (left) and a mesh of squares imposed on F with the squares

intersecting F shown in grey (right).

1.2.1 Dimension Theory of Measures

An important aspect of dimension theory is the interplay between the dimen-

sions of sets and the dimensions of measures; see, for example, the mass

distribution principle, Lemma 3.4.2. For this we need analogous notions of
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dimension for measures. The (lower) Hausdorff dimension of a Borel measure

µ on R
d is

dimH µ = inf{dimH E : µ(E) > 0}.

Thus the dimension of a measure is conveniently expressible in terms of

dimensions of sets which ‘see’ the measure. We write

supp(µ) = {x ∈ R
d : µ(B(x,r)) > 0 for all r > 0} (1.2)

for the support of µ, which is necessarily a closed set, and we say µ is fully sup-

ported on F ⊆ R
d if supp(µ) = F and supported on F ⊆ R

d if supp(µ) ⊆ F .

Straight from the definition one has, for µ supported on F ,

dimH µ � dimH F .

In fact, for Borel sets F ,

dimH F = sup{dimH µ : supp(µ) ⊆ F }. (1.3)

This follows by finding compact subsets E ⊆F with positive and finite

s-dimensional Hausdorff measure for all s < dimH F , see Falconer (2014,

theorem 4.10). Similarly, the (lower) packing dimension of a Borel measure µ

on R
d is

dimP µ = inf{dimP E : µ(E) > 0}.

Again one has, for µ supported on F ,

dimP µ � dimP F

and, for Borel sets F ,

dimP F = sup{dimP µ: supp(µ) ⊆ F }.

This final result follows by a similar approach, this time due to Joyce and Preiss

(1995). The box dimension of a measure is a less well-developed concept. We

formulate a definition in Section 4.2 following Falconer et al. (2020), which is

partially motivated by the Assouad spectrum; see Section 3.3.
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The Assouad Dimension

In this chapter we define the Assouad dimension, which is the central notion

of the book. We discuss its origins in Section 2.3 and establish many of its

basic properties in Section 2.4 such as stability under Lipschitz mappings and

monotonicity. These are compared with the basic properties of the Hausdorff

and box dimensions.

2.1 The Assouad Dimension and a Simple Example

If the Hausdorff dimension provides fine, but global, geometric information,

then the Assouad dimension provides coarse, but local, geometric information.

The key difference between the Assouad dimension and the dimensions

discussed in Chapter 1 is that only a small part of the set is considered at

any one time. This is what gives it its ‘local quality’ and what leads to many of

its interesting features; see Figure 2.1.

The Assouad dimension of a non-empty set F ⊆ R
d is defined by

dimA F = inf

{

α : there exists a constant C > 0 such that,

for all 0 < r < R and x ∈ F ,

Nr

(

B(x,R) ∩ F
)

� C

(

R

r

)α }

.

Recall that Nr(E) is the smallest number of open sets required for an r-cover of

a bounded set E. Note that we can replace Nr in the definition of the Assouad

dimension with any of the standard covering or packing functions, see the

discussion in Chapter 1, and still obtain the same value for the dimension.

For example, Nr(E) could denote the number of cubes in an r-mesh oriented
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2.1 The Assouad Dimension and a Simple Example 11

at the origin which intersect E or the maximum cardinality of an r-separated

subset of E. We also obtain an equivalent definition if the ball B(x,R) is taken

to be open or closed (although we usually think of it as being closed) or if it is

replaced by a cube of sidelength R centred at x.

Figure 2.1 Left: the self-affine set from Figure 1.2. Right: A covering of a ball

intersected with a ‘thick part’ of the self-affine set from Figure 1.2 using balls of

smaller radii. Understanding how large such covers have to be leads to calculation

of the Assouad dimension.

Before we move on let us consider a simple but fundamental example;

see Figure 2.2. This example serves to demonstrate how inhomogeneity

across a set can cause the box and Assouad (and Hausdorff) dimensions to

be distinct.

Theorem 2.1.1 For F = {0} ∪ {1/n : n ∈ N},

dimA F = 1,

dimB F = 1/2,

and

dimH F = 0.

Proof To prove that dimA F = 1 it suffices to find a constant c > 0 and a

sequence of points xn ∈ F and scales 0 < rn < Rn such that Rn/rn → ∞ and

for all n

Nrn(B(xn,Rn) ∩ F) � cRn/rn.
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